393 research outputs found

    Nanoscale phase quantification in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 relaxor ferroelectrics by means of Na 23 NMR

    Get PDF
    We address the unsolved question on the structure of relaxor ferroelectrics at the atomic level by characterizing lead-free piezoceramic solid solutions (100-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-xBT) (for x=1,4,6, and 15). Based on the relative intensity between spectral components in quadrupolar perturbed Na23 nuclear magnetic resonance, we present direct evidence of the coexistence of cubic and polar local symmetries in these relaxor ferroelectrics. In addition, we demonstrate how the cubic phase vanishes whenever a ferroelectric state is induced, either by field cooling or changing the dopant amount, supporting the relation between this cubic phase and the relaxor state.open0

    Reconciling local structure disorder and the relaxor state in (Bi1/2Na1/2)TiO3 -BaTiO3

    Get PDF
    Lead-based relaxor ferroelectrics are key functional materials indispensable for the production of multilayer ceramic capacitors and piezoelectric transducers. Currently there are strong efforts to develop novel environmentally benign lead-free relaxor materials. The structural origins of the relaxor state and the role of composition modifications in these lead-free materials are still not well understood. In the present contribution, the solid-solution (100-x)(Bi1/2Na1/2)TiO3-xBaTiO(3) (BNT-xBT), a prototypic lead-free relaxor is studied by the combination of solid-state nuclear magnetic resonance (NMR) spectroscopy, dielectric measurements and ab-initio density functional theory (DFT). For the first time it is shown that the peculiar composition dependence of the EFG distribution width (Delta QIS(width)) correlates strongly to the dispersion in dielectric permittivity, a fingerprint of the relaxor state. Significant disorder is found in the local structure of BNT-xBT, as indicated by the analysis of the electric field gradient (EFG) in Na-23 3QMAS NMR spectra. Aided by DFT calculations, this disorder is attributed to a continuous unimodal distribution of octahedral tilting. These results contrast strongly to the previously proposed coexistence of two octahedral tilt systems in BNT-xBT. Based on these results, we propose that considerable octahedral tilt disorder may be a general feature of these oxides and essential for their relaxor properties.ope

    Evidence for the formation of magnetic moments in the cuprate superconductor Hg0.8_{0.8}Cu0.2_{0.2}Ba2_2Ca2_2Cu3_3O8+δ_{8+\delta} below TcT_c seen by NQR

    Full text link
    We report pure zero field nuclear magnetic resonance (NQR) measurements on the optimally doped three layer high-Tc T_{c} -compounds HgBaCaCuO and HgBaCaCuO(F) with TcT_c 134 K. Above Tc T_{c} two Cu NQR line pairs are observed in the spectra corresponding to the two inequivalent Cu lattice sites. Below Tc T_{c} the Cu NQR spectra show additional lines leading to the extreme broadened Cu NQR spectra at 4.2 K well known for the HgBaCaCuO compounds. The spin-lattice relaxation curves follow a triple exponential function with coefficients depend onto the saturation time (number of saturation pulses), whereas the spin-spin relaxation curve is described by a single exponential function. From the spin-lattice relaxation we deduced a complete removal of the Kramers degeneracy of the Cu quadrupole indicating that the additional lines are due to a Zeemann splitting of the 63/65^{63/65}Cu lines due to the spontaneous formation of magnetic moments within the CuO layers. Below 140 K, the spectra are well fitted by a number of 6 63/65^{63/65}Cu line pairs. From the number of the Cu lines, the position of the lines relative to each other and the complete removal of the Kramers degeneracy we deduced an orientation of the magnetic moments parallel to the symmetry axis of the electric field gradient tensor with magnitudes of the order of 1000 G. We also discuss the possible microscopic origin of the observed internal magnetic fields.Comment: 11 pages, 12 figure

    Synthesis of short-range ordered aluminosilicates at ambient conditions

    Get PDF
    We report here on structure-related aggregation effects of short-range ordered aluminosilicates (SROAS) that have to be considered in the development of synthesis protocols and may be relevant for the properties of SROAS in the environment. We synthesized SROAS of variable composition by neutralizing aqueous aluminium chloride with sodium orthosilicate at ambient temperature and pressure. We determined elemental composition, visualized morphology by microscopic techniques, and resolved mineral structure by solid-state ²⁚Si and ²⁡Al nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Nitrogen sorption revealed substantial surface loss of Al-rich SROAS that resembled proto-imogolite formed in soils and sediments due to aggregation upon freezing. The effect was less pronounced in Si-rich SROAS, indicating a structure-dependent effect on spatial arrangement of mass at the submicron scale. Cryomilling efficiently fractured aggregates but did not change the magnitude of specific surface area. Since accessibility of surface functional groups is a prerequisite for sequestration of substances, elucidating physical and chemical processes of aggregation as a function of composition and crystallinity may improve our understanding of the reactivity of SROAS in the environment

    Reconciling Local Structure Disorder and the Relaxor State in (Bi1/2Na1/2)TiO3-BaTiO3

    Get PDF
    Lead-based relaxor ferroelectrics are key functional materials indispensable for the production of multilayer ceramic capacitors and piezoelectric transducers. Currently there are strong efforts to develop novel environmentally benign lead-free relaxor materials. The structural origins of the relaxor state and the role of composition modifications in these lead-free materials are still not well understood. In the present contribution, the solid-solution (100-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-xBT), a prototypic lead-free relaxor is studied by the combination of solid-state nuclear magnetic resonance (NMR) spectroscopy, dielectric measurements and ab-initio density functional theory (DFT). For the first time it is shown that the peculiar composition dependence of the EFG distribution width (ΔQISwidth) correlates strongly to the dispersion in dielectric permittivity, a fingerprint of the relaxor state. Significant disorder is found in the local structure of BNT-xBT, as indicated by the analysis of the electric field gradient (EFG) in 23Na 3QMAS NMR spectra. Aided by DFT calculations, this disorder is attributed to a continuous unimodal distribution of octahedral tilting. These results contrast strongly to the previously proposed coexistence of two octahedral tilt systems in BNT-xBT. Based on these results, we propose that considerable octahedral tilt disorder may be a general feature of these oxides and essential for their relaxor properties

    Dirhodium complex immobilization on modified cellulose for highly selective heterogeneous cyclopropanation reactions

    Get PDF
    A novel, efficient approach for the functionalization of microcrystalline cellulose (MCC) is presented. The as-obtained material allows the immobilization of chiral dirhodium catalysts preserving their enantioselectivity in asymmetric cyclopropanation reactions. As model, microcrystalline cellulose is modified with a polyethylene glycol derived linker, and Rh₂(S-DOSP)₄ is grafted on the material to produce a heterogeneous catalyst. SEM images at different stages of the immobilization show an unchanging uniform morphology, providing constantly good separation characteristics. The modification of the cellulose material with the polyethylene derived linker and the immobilization process are monitored using DNP enhanced ¹H → ¹³C CP MAS NMR, quantitative ¹⁹F MAS NMR, TGA and ICP-OES analysis, confirming the success of the immobilization as well as the stability of bonds between the used linker molecule and the cellulose material. Finally, the evaluation of the produced catalyst is demonstrated in the asymmetric cyclopropanation reaction between styrene and methyl(E)-2-diazo-4-phenylbut-3-enoate showing excellent enantioselectivity with an ee of nearly 90% over a wide temperature range as well as good recyclability characteristics in four consecutive catalysis cycles

    SiCO Ceramics as Storage Materials for Alkali Metals/Ions: Insights on Structure Moieties from Solid‐State NMR and DFT Calculations

    Get PDF
    Polymer‐derived silicon oxycarbide ceramics (SiCO) have been considered as potential anode materials for lithium‐ and sodium‐ion batteries. To understand their electrochemical storage behavior, detailed insights into structural sites present in SiCO are required. In this work, the study of local structures in SiCO ceramics containing different amounts of carbon is presented. ¹³C and ²⁹Si solid‐state MAS NMR spectroscopy combined with DFT calculations, atomistic modeling, and EPR investigations, suggest significant changes in the local structures of SiCO ceramics even by small changes in the material composition. The provided findings on SiCO structures will contribute to the research field of polymer‐derived ceramics, especially to understand electrochemical storage processes of alkali metal/ions such as Na/Na⁺ inside such networks in the future

    Dirhodium Coordination Polymers for Asymmetric Cyclopropanation of Diazooxindoles with Olefins: Synthesis and Spectroscopic Analysis

    Get PDF
    A facile approach is reported for the preparation of dirhodium coordination polymers [Rh₂(L1)₂]n (Rh₂-L1) and [Rh₂(L2)₂]n (Rh₂-L2; L1=N,N’-(pyromellitoyl)-bis-L-phenylalanine diacid anion, L2=bis-N,N’-(L-phenylalanyl) naphthalene-1,4,5,8-tetracarboxylate diimide) from chiral dicarboxylic acids by ligand exchange. Multiple techniques including FTIR, XPS, and ¹H→¹³C CP MAS NMR spectroscopy reveal the formation of the coordination polymers. ¹⁹F MAS NMR was utilized to investigate the remaining TFA groups in the obtained coordination polymers, and demonstrated near-quantitative ligand exchange. DR-UV-vis and XPS confirm the oxidation state of the Rh center and that the Rh-single bond in the dirhodium node is maintained in the synthesis of Rh₂-L1 and Rh₂-L2. Both coordination polymers exhibit excellent catalytic performance in the asymmetric cyclopropanation reaction between styrene and diazooxindole. The catalysts can be easily recycled and reused without significant reduction in their catalytic efficiency

    SiCN Ceramics as Electrode Materials for Sodium/Sodium Ion Cells – Insights from ²³Na In‐Situ Solid‐State NMR

    Get PDF
    Polymer-derived silicon carbonitride ceramic (SiCN) is used as an electrode material to prepare cylindrical sodium/sodium ion cells for solid-state NMR investigations. During galvanostatic cycling structural changes of the environment of sodium/sodium ions are investigated by applying ²³Na in-situ solid-state NMR. Changes of the signals assigned to sodium metal, intercalated sodium cation and sodium cation originating from the electrolyte are monitored as well as the occurrence of an additional signal in the region of metallic sodium. The intensity of this additional signal changes periodically with the cycling process indicating the reversibility of structures formed and deformed during the galvanostatic cycling. To identify interactions of sodium/sodium ions with the SiCN electrode materials, the cycled SiCN material is studied by ²³Na ex-situ MAS NMR at high spinning rates of 20 and 50 kHz to obtain appropriate spectral resolution

    Topochemical Fluorination of La2NiO4+d::Unprecedented ordering of oxide and fluoride ions in La2NiO3F2

    Get PDF
    Synopsis La2NiO3F2 crystallizes in a new anion-ordered distortion variant of the n = 1 Ruddlesden−Popper-type structure. The unprecedented ordering of oxygen anions in the interlayer leads to an expansion of the lattice perpendicular to the stacking direction, accompanied by a strong tilting of NiO4F2 octahedra. A weakening of Ni−F−F−Ni superexchange interactions between the perovskite-type layers due to the reduced covalency of fluoride ions decreases the magnetic ordering temperature strongly. Abstract The Ruddlesden–Popper (K2NiF4) type phase La2NiO3F2 was prepared via a polymer-based fluorination of La2NiO4+d. The compound was found to crystallize in the orthorhombic space group Cccm (a = 12.8350(4) Å, b = 5.7935(2) Å, c = 5.4864(2) Å). This structural distortion results from an ordered half occupation of the interstitial anion layers and has not been observed previously for K2NiF4-type oxyfluoride compounds. From a combination of neutron and X-ray powder diffraction and 19F magic-angle spinning NMR spectroscopy, it was found that the fluoride ions are only located on the apical anion sites, whereas the oxide ions are located on the interstitial sites. This ordering results in a weakening of the magnetic Ni–F–F–Ni superexchange interactions between the perovskite layers and a reduction of the antiferromagnetic ordering temperature to 49 K. Below 30 K, a small ferromagnetic component was found, which may be the result of a magnetic canting within the antiferromagnetic arrangement and will be the subject of a future low-temperature neutron diffraction study. Additionally, density functional theory-based calculations were performed to further investigate different anion ordering scenarios
    • …
    corecore