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Abstract 

The Ruddlesden-Popper (K2NiF4) type phase La2NiO3F2 was prepared via a polymer based 

fluorination of La2NiO4+d. The compound was found to crystallize in the orthorhombic space 

group Cccm (a = 12.8350(4) Å, b = 5.7935(2) Å, c = 5.4864(2) Å). This structural distortion 

results from an ordered half occupation of the interstitial anion layers, and has not been 

observed previously for K2NiF4-type oxyfluoride compounds. From a combination of neutron and 

X-ray powder diffraction, and 19F MAS NMR spectroscopy, it was found that the fluoride ions are 

only located on the apical anion sites, whereas the oxide ions are located on the interstitial sites. 

This ordering results in a weakening of the magnetic Ni-F-F-Ni superexchange interactions 

between the perovskite layers, and a reduction of the antiferromagnetic ordering temperature to 

49 K. Below 30 K, a small ferromagnetic component could be found, which may be the result of 

a magnetic canting within the antiferromagnetic arrangement, and will be the subject of a future 

low-temperature neutron diffraction study. Additionally, DFT based calculations were performed 

in order to further investigate different anion ordering scenarios. 

 

Keywords 

Oxyfluorides; Ruddlesden-Popper; Perovskites; Fluorination; La2NiO4+d; Magnetism 
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1 Introduction 

Compounds with Ruddlesden-Popper type structure An+1BnO3n+1 are known for a variety of 

functional properties, among them superconductivity 1-5, catalytic 6, ferroelectric 7 and magnetic 8-

9 properties. The member with n = 1 (A2BX4, often referred to as K2NiF4 type structure) can be 

understood as being build-up of alternating layers of perovskite ABX3 and rock salt AX layers. 

The highest symmetry of this arrangement is I4/mmm. In this arrangement, two 

crystallographically distinguishable oxide ion sites exist, which are the so-called equatorial (X1, 

4c) and apical (X2, 4e) anion site (Figure 1). Furthermore, depending on the transition metal B 

involved, many Ruddlesden-Popper type compounds possess a certain flexibility to become 

significantly oxidized. This originates from the presence of large interstitial anion sites (X3, 4d) 

within the rock salt type layers (Figure 1). If all those interstitial sites are filled by oxide ions, one 

usually talks about the Aurivillius type structure, as found, e.g., for Bi2WO6 
10. 

 

Figure 1. Schematic drawing of the n = 1 Ruddlesden-Popper type (K2NiF4 type) structure with composition 
A2B(X1equatorial)2(X2apical)2(X3inerstitial)2. Equatorial, apical and interstitial anion sites are shown with different colors. 

For Ruddlesden-Popper type compounds, the interstitial anion sites can also be filled with high 

amounts of fluoride ions 11-13. This can result in strong changes of the above-mentioned 

functional properties and further has led to the development of intercalation based electrode 

materials for fluoride ion batteries 14-15. In previous reports, it was found that the fluoride ions 

show a predominant occupation of the interstitial site in case the composition allows for 

occupation of the apical and equatorial sites by oxide ions only, i.e., for compositions A2BOxFy 

with x ≥ 4 (e.g. for LaSrMnO4F1.7 and La2CoO4F1.2 
14-15). For x = 2 and (x+y) ≤ 4, the fluoride ions 

are located only on interstitial anion sites (e.g. Sr2CuO2F2 
16-17, Ca2CuO2F2 

18, Ca2-xSrxCuO2F2 
18 
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or Ba2-xSrxPdO2F2 (Nd2CuO4 type (T’-type) structure) 19). Occupation of both, the apical and the 

interstitial sites, can be found for 2 < x < 4 and (x+y) > 4 (e.g. for Sr2CuO2F2+δ (La2CuO4 type (T-

type) structure with additional fluoride ions δ on interstitial anion sites) 4, Ca2CuO2F2+δ (Nd2CuO4 

type (T’-type) structure with additional fluoride ions δ on anion apical sites) 20 or Sr2TiO3F2 
21-22). 

Fluorinated compounds with significant occupancy of the interlayers were found to show a 

strong expansion of the unit cell perpendicular to the plane of the interlayers, where the filling of 

the interlayers can occur in a staged (LaSrMnO4F 23-24 and Sr2TiO3F2 
21-22) or a statistical manner 

(e.g. Ba2ZrO3F2(H2O)0.5 
25 or LaSrMnO4F1.7 

15). A half-filled ordered scenario of fluoride ions is 

further known for the n = 2 compound Sr3Fe2O4F4 
26. 

In this article, we report on the preparation of La2NiO3F2 via polymer-based low-temperature 

fluorination of La2NiO4+d. For the structural characterization a coupled analysis of X-ray and 

neutron powder diffraction data, in combination with 19F MAS NMR and DFT based analysis was 

performed. We show that La2NiO3F2 possesses half filling of every interlayer in an ordered 

fashion, which results in a unique orthorhombic structural distortion without strong expansion 

perpendicular to the interlayers, which was previously unknown for oxyfluorides. Even more 

fascinating, this distortion results in an unexpected ordering of the anions, with the oxide ions 

being located at the equatorial and interstitial sites and the fluoride ions being located on the 

apical sites. The fluorination results in a strong decrease of the magnetic ordering temperature 

from 330 K for La2NiO4+d 
27 to 49 K, which is explained by a decrease of the Ni-F-F-Ni 

superexchange interaction strength between the perovskite layers via the apical fluoride ions. 

2 Experimental 

2.1 Synthesis 

The precursor oxide La2NiO4+d was synthesized by a solid-state reaction between dried (700 °C, 

4 h) La2O3 (Alfa Aesar, 99.9%) and NiO (Alfa Aesar, 99%). Stoichiometric amounts of the 

starting materials were mixed using a ball mill (300 RPM, 1 h), and twice heated to 1200 °C for 

12 h in air with an intermediate regrinding. For the topochemical fluorination of La2NiO4+d to 

La2NiO3F2, the oxide was mixed with the fluorination agent polyvinylidene fluoride CH2CF2 

(PVDF, Sigma-Aldrich) 22
 with 2.5 % excess and heated to 370 °C for 24h under air.  

Sr2TiO3F2 and Sr2TiO3FH0.48 were used as reference materials to support the NMR analysis of 

La2NiO3F2. Sr2TiO3F2 was prepared via topochemical fluorination of Sr2TiO4 at 370 °C using 

PVDF. Sr2TiO3FH0.48 was prepared by mixing Sr2TiO3F2 with NaH in a 1:1 molar ratio and 

heating at 300 °C for 48 h in a stainless steel vacuum tight reactor. More details about those 

compounds can be found in Slater et al.21-22 and Wissel et al.21, 28. 
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2.2 Characterization 

X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance in Bragg-Brentano 

geometry with Cu Kα radiation and a VANTEC detector. The high quality data for the Rietveld 

refinement of La2NiO3F2 were recorded using a variable divergence slit of 4 mm with 

measurement times of 17 h for the angular range of 5 to 130°. High-temperature XRD patterns 

were recorded on the same setup (fixed divergence slit of 0.3°) using an Anton Paar HTK 1200N 

high-temperature chamber in the angular range between 20° and 47° with a scan time of ~ 0.5 h. 

Time-of-flight (TOF) powder neutron diffraction (NPD) data were recorded on the HRPD high-

resolution diffractometer at the ISIS pulsed spallation source (Rutherford Appleton Laboratory, 

U.K.) 29-30. ~ 1.5 g of La2NiO3F2 were loaded into a 6 mm diameter thin-walled, cylindrical 

vanadium sample can, and data were collected at ambient temperature for ∼ 20 µAh proton 

beam current to the ISIS target (corresponding to ~ 0.5 h beam time). The time-of-flight data 

were normalized to the incident spectrum and corrected for detector efficiency by reference to a 

V:Nb standard using the Mantid suite of diffraction utilities 31
. 

Analysis of diffraction data were performed using the Rietveld method with the program TOPAS 

V. 5.0 32-33 using the whole 2θ-range as well as the data recorded on all the diffraction banks of 

the TOF diffractometer. The instrumental intensity distribution of the XRD and NPD instruments 

was determined empirically from a sort of fundamental parameters set 34 using a reference scan 

of LaB6 (NIST 660a) and silicon, respectively. The microstructural parameters (crystallite size 

and strain broadening) were refined to adjust the peak shapes. Different isotropic thermal 

parameters were refined for the different crystallographic sites. 

The average oxidation states of Ni of La2NiO4+d and La2NiO3F2 were determined by iodometric 

titrations. Samples (~ 50 mg) were dissolved in 1 M HCl containing an excess of KI. Starch 

solution was added as an indicator. Titration was performed using a standardized Na2S2O3 

solution with a concentration of 0.01 mol/l. The average oxidation state was determined on three 

independent measurements. 

The surface oxidation state of Ni was examined by X-ray photoelectron spectroscopy (XPS) 

analysis on a Physical Electronic VersaProbe XPS unit (PHI 5000 spectrometer) with Al Kα 

radiation (1486.6 eV). All detail spectra were recorded with a step size of 0.1 eV and a pass 

energy of 23.5 eV. A neutralizer compensated surface charge effects by using low energy 

electrons and Ar+ ions. The binding energies were calibrated to the gold 4f7/2 (Au4f7/2) and silver 

3d5/2 (Ag3d5/2) emission line at 84 eV and 368 eV. To determine the integral intensity and the 
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exact binding energies of the emission lines, the spectra were background corrected according 

to Shirley 35.  

Magnetic characterization was performed with a Quantum Design MPMS. Powder samples were 

contained in gelatin capsules and mounted in a straw. Zero-field cooled (ZFC) and field-cooled 

(FC) curves were measured from 5 K to 350 K in the applied field µ0H = 1T. All magnetization 

measurements were corrected by the diamagnetic contributions of the phases which are present 

in the phase mixtures as well as by contribution stemming from gelatin capsule and straw used 

for sample mounting 36.  

19F MAS NMR spectra were recorded in a magnetic field of 14.1 T with a Bruker Avance III 

spectrometer at a frequency of 564.686388 MHz. An 1.3 mm MAS HX probe was employed with 

spinning frequencies between 10 kHz and 55 kHz. Paramagnetic compounds were diluted with 

inert substances in powder form to prevent any complications when spinning the ZrO2 rotors. 

Spectra of Sr2TiO3F2 and Sr2TiO3FH0.48 were recorded with a single pulse experiment with a 90 

degree pulse length of 2.1 us and a recycle delay of 2 s and 10 s, respectively. The number of 

scans varied from 16 to 128, according to the dilution of the sample. Baseline correction was 

performed with cubic-splines. The 19F MAS NMR spectra of La2NiO3F2 were recorded with a 

Hahn-echo, with pulse length of 2.1 for the π/2 and 4.2 us for π pulses. The echo delay was rotor 

synchronized and set to one rotor period. A total of 512 scans were accumulated with a recycle 

delay of 0.1 s. Full echoes were processed, spectra are displayed in magnitude mode to prevent 

phasing errors. The 19F chemical shift scale was referenced to CFCl3 at 0 ppm using the 

resonance of PTFE at -123.4 ppm as an external standard.37 

2.3 DFT+U Calculations 

Density functional theory (DFT) calculations were performed using the projector-augmented 

wave (paw) method 38 as implemented in the planewave code VASP 5.3.5 39. For exchange and 

correlation the parametrization of Perdew, Burke and Ernzerhof (PBE) 40-41 was used. To correct 

for the strong localization of d-electrons in Ni, a sphericaly averaged Hubbard correction 

(DFT+U) 42-43 was applied. In accordance with previous calculations 44-45 on compounds 

containing divalent nickel, a value of Ueff = U-J = 5 eV was chosen. In all calculations we use a 

planewave cutoff of 500 eV and a Γ-centered 4 x 8 x 8 Monkhorst-Pack k-point mesh.  

Electronic self-consistency is considered to be reached as total energies vary by less 10-6 eV in 

consecutive iterations. Full structure optimizations (atomic positions and unit-cell vectors) were 

performed until forces did not exceed a value of 0.001 eV/Å. 
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By increasing the k-mesh to 6 x 12 x 12, we have checked that the calculated energy differences 

are converged to ~ 0.002 eV per formula unit of La2NiO3F2. 

3 Results and Discussion 

3.1 Structural and Compositional Characterization of La2NiO3F2 

The fluorination of La2NiO4+d was examined for a variety of different molar ratios x of 

La2NiO4+d:CH2CF2 (PVDF), with x between 0.5 and 2. A nearly single phase product was 

obtained using only marginal (~ 2 %) excess relative to stoichiometric ratios of La2NiO4+d to 

PDVF (x = 1:1). For lower fluorine contents (x = 2:1), a two phase mixture of the unreacted 

tetragonal parent phase La2NiO4+d and the phase obtained when using a stoichiometric ratio (x = 

1:1) were found, whereas for higher amounts of PVDF (x = 1:1.5, 1:2), again the phase obtained 

when using a stoichiometric ratio (x = 1:1) and LaF3 were found. The amount of LaF3 increased 

with increasing amounts of polymer used.  

In order to determine the composition of the product obtained for x = 1, the compound was 

further investigated using iodometric titration and XPS (Figure 2). While titration provides the 

bulk oxidation state of Ni, XPS is only surface sensitive. The titration of La2NiO4+d and La2NiO3F2 

indicated average Ni oxidation states of Ni2+ in both compounds (+2.10(1) for La2NiO4+d (d ~ 

0.05) and +2.06(1) for La2NiO3F2). Therefore, a small reduction of the oxidation state is found, 

and this has been observed previously for PVDF based fluorinations even in air, e.g., the 

synthesis of SrFeO2F from SrFeO3-d 
46-47. For XPS, due to a partial overlap of the Ni 2p3/2 and the 

La 3d3/2 peaks, the Ni 3p peak was used to investigate the Ni valence; note that the 3p1/2 and 

3p3/2 peaks are in general not well resolved 48-49. The signals at binding energies of ~67.7 eV and 

67.0 eV can be assigned to Ni2+ 3p 50-52 of La2NiO4+d and La2NiO3F2, respectively, which is in 

agreement with the small reduction of the oxidation state as obtained from titration experiments. 

In combination with a determination of the anion content from the analysis of the neutron powder 

diffraction data (see later in this section), it can be concluded that the new compound has an 

approximate composition of La2NiO3F2 (more precisely: La2NiO3.06F1.94). In agreement with 

previous findings for the syntheses of perovskite and Ruddlesden-Popper type oxyfluorides 53-56, 

this corresponds to a nearly stoichiometric incorporation of the fluoride ions from the polymer. 
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Figure 2: Ni 3p XPS spectrum of La2NiO4+d and La2NiO3F2. 

 

Figure 3: X-ray diffraction patterns of La2NiO4+d and La2NiO3F2. 

When comparing the X-ray diffraction patterns of the precursor oxide La2NiO4+d (d ~ 0.05) to the 

one of La2NiO3F2 (Figure 3), significant changes can be observed. La2NiO4+d crystallizes in the 

n=1 Ruddlesden-Popper type structure (a = 3.86279(5) Å and c = 12.6746(2) Å, tetragonal 

space group I4/mmm within the resolution of the device used), in good agreement with previous 

works 57-58. The pattern of La2NiO3F2, on the other hand, showed a clear splitting of some 

reflections indicating symmetry lowering to orthorhombic.  
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Fits of the pattern were attempted using a face centered unit cell with a size √2 x √2 x 1 of the 

parent unit cell with symmetry of I4/mmm, which allowed to fit the main reflections. In contrast to 

what was found previously for the fluorination of K2NiF4 type compounds, no strong increase of 

the c-axis was observed, and the orthorhombic distortion resulted mainly in a strong straining 

within the ab plane, with axis lengths of a ≈ 5.79 Å and b ≈ 5.49 Å. This orthorhombic straining is 

to the best of our knowledge, one of the highest (if not the highest) straining found for anion 

excess K2NiF4 type compounds A2BX4+y. 

Further loss of translational symmetry was indicated from the presence of superstructure 

reflections (e.g. (310), (112), (221), (510) with indexes given in relation to the orthorhombic √2 x 

√2 x 1 cell). These could originate from small distortions or ordering scenarios of anions, which 

are difficult to determine based on XRD only. Therefore, a coupled Rietveld analysis of XRD and 

NPD data (Figure 4) was performed. The patterns could be best fitted using a structural model 

with space group Cccm (a = 12.8364(3) Å, b = 5.7940(2) Å and c = 5.4871(2) Å). This tilt system 

is theoretically possible 59 (a-a-0/a-a-0 in Glazer’s notation, (ϕ ϕ 0)( ϕ ϕ 0) in the notation by 

Aleksandrov 59), and was previously observed for the n=3 Ruddlesden-Popper type compound 

La3.2Ba0.8Mn3O10 
60 (which does not show occupation of anions in the interlayers). The 

corresponding symmetry tree is shown in Figure 5. Other klassengleiche subgroups of Fmmm 

were also examined, but resulted in significantly worse fits due to the systematic absence of 

certain reflections, which are clearly visible in the neutron diffraction patterns. Exemplarily, 

Pawley fits within space group no. 64 are provided in the supporting information (since this is a 

very common distortion found for many K2NiF4 compounds 14, 27, see Figure S 1).   

(a)  (b)  
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(c) (d)  

Figure 4: Coupled Rietveld analysis of La2NiO3F2 (space group: Cccm) of HRPD bank 1 data (a), HRPD bank 2 data 
(b), HRPD bank 3 data (c),and XRD data (d). 

 

Figure 5: Symmetry tree for the symmetry reduction from I4/mmm to Cccm. Equatorial (equ.), apical (ap.) and 
interstitial (int.) sites of the anions X are indicated (see also structural data reported in Table 1). 

The analysis of the neutron diffraction data facilitates the detailed determination of the structure 

and composition of the anion sublattice. Here, the reader should be aware that F and O have 

nearly identical scattering lengths / atomic form factors for neutron and X-ray diffraction, and are 

indistinguishable with these methods. The analysis of exact bond distances can, however, allow 

for the assignment of anion sites to one type of anion 13, which will be shown later in this section. 

Both, the equatorial and apical anion sites, which are fully occupied in the tetragonal starting 

compound La2NiO4+d, are fully occupied for the fluorinated material La2NiO3F2. The symmetry 
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reduction from I4/mmm to Cccm results in a splitting of the interlayer anion site into two 

independent crystallographic sites (Figure 5). The analysis of the neutron diffraction data 

showed that the 4a site is not occupied, whereas the 4b site is fully occupied with one of the 

anion species. From this, an overall composition of La2NiX5 can be derived for the fluorinated 

compounds, from which, taking into account the presence of single valent Ni2+, the composition 

La2NiO3F2 can be derived. The refined structural parameters are listed in Table 1, a drawing of 

the refined crystal structure is shown in Figure 6 (with assignment of fluoride and oxide ions to 

the crystallographic sites as confirmed by bond valence, and NMR analysis, see later in this 

article). Bond distances are given in Table 2. 

In previous reports on oxyfluoride compounds with K2NiF4 type structure (e.g. Sr2TiO3F2 
21-22

 or 

LaSrMnO4F 23-24), a layer wise occupation of every second anion layer was observed, resulting 

in a symmetry lowering to P4/nmm. This was found to result in a strong increase of the c-axis 

from ~ 12.6 Å to ~ 14 Å (LaSrMnO4F) and ~ 15 Å (Sr2TiO3F2), without any significant tilting of the 

MnO6 or TiO5F octahedra. This layer wise ordering is symmetry forbidden in Cccm, and the site 

splitting within this space group implies half filling of every interstitial layer in a channel like 

manner, accompanied by a tilting of the octahedra. This appears to be the origin for the 

orthorhombic distortion. This ordering scenario does not result in a strong increase of the long 

crystallographic axis (cI4/mmm resp. aCccm). Instead, a strong expansion along the [110]I4/mmm 

direction (along which channels of interstitial anions are formed) and contraction along the 

[-110]I4/mmm direction were observed (along which the tilting of the octahedra takes place).  

Table 1: Structural parameters for La2NiO3F2 (space group: Cccm) from coupled Rietveld analysis of XRD and NPD 
data.  

Atom Wyckoff site x y z Occ. B [Å2] 

La1 8l 0.38826(4) 0.7458(2) 0 1 1.05(3) 

Ni1 4e ¼  ¼  0 1 1.61(4) 

O1@X1 (equ.) 8g 0.2673(2) 0 ¼  1 1.26(4) 

F1@X2 (ap.) 8l 0.5869(2) 0.6576(3) 0 1 2.34(6) 

O2@X3 (int.) 4b 0 ½  ¼  1 1.26(4) 

a [Å]  12.8350(4) b [Å] 5.7935(2) c [Å] 5.4864(2) 

Rwp (XRD+NPD) [%]   3.12 GOF (XRD+NPD)   1.58 RBragg [%] 1.13 (XRD) 

                3.55 (NPD, bank 1) 
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 (a) (b)  

Figure 6: Crystal structure of La2NiO3F2 for an OX1 – FX2 – OX3 arrangement on equatorial (X1) and apical (X2) sites of 
the octahedra as well as in interlayer (X3) sites along different viewing directions (along the b-axis (a) and along the c-

axis (b)).  

Table 2: Selected bond distances of La2NiO3F2 for an OX1 – FX2 – OX3 arrangement on equatorial (X1) and apical (X2) 
sites of the octahedra as well as in interlayer (X3) sites. 

Bond Bond distance [Å] in 

La2NiO3F2 with OX1 – 

FX2 – OX3 distribution  

La1 – X1 2.539(2) [2x] 

2.813(2) [2x] 

La1 – X2  2.356(2) [1x] 

2.602(2) [1x] 

2.809(1) [2x] 

La1 – X3  2.4718(8) [2x] 

Ni1 – X1 2.0076(2) [4x] 

Ni1 – X2 2.160(2) [2x] 

 

As discussed above, oxide and fluoride ions are not easily distinguishable, neither by X-ray nor 

by neutron diffraction. Previously, bond valence sum calculations were shown to be capable 13 to 

assign oxide and fluoride ions to the respective crystallographic sites. Therefore, different 

distribution models of oxide and fluoride ions were tested. Table 3 lists results of calculations for 
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different arrangements on equatorial (X1) and apical sites (X2) of the octahedra as well as on 

interlayer sites (X3) for the determined composition La2NiO3F2 (mixed sites correspond to an 

occupation of 50 % oxide and 50 % fluoride). The different models can be judged by the so-

called global instability index (GII), where a lower index corresponds to a more stable structural 

arrangement 61. The highest GIIs were found for anion distributions for which the equatorial 

anion site (X1) was (partially) replaced by fluoride ions (F1). Thus, these configurations can be 

excluded, and this agrees well with previous studies on Ruddlesden-Popper type oxyfluorides 13. 

For an occupation of the equatorial anion site (X1) by oxide ions, two different distributions of 

oxide and fluoride ions on the remaining sites (X2 and X3) can be considered: one configuration 

with an occupation of the interlayers (X3) by oxide ions and occupation of the apical anion site 

(X2) by fluoride ions, and a second configuration with occupation of the interlayer site (X3) by 

fluoride ions and mixed occupation of the apical site (X2) by fluoride and oxide ions. The most 

stable configuration was found for the configuration with the interlayer site (X3) being occupied 

by oxide ions and the apical site (X2) being occupied by fluoride ions. This result is surprising, 

since a significant occupation of the interlayer site by oxide ions was never observed before for 

oxyfluoride compounds with Ruddlesden-Popper type structure. 
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Table 3: Results of bond valence sum calculations for La2NiO3F2 for different O/F distributions on equatorial (X1) and 
apical (X2) sites of the octahedra as well as in interlayer (X3) sites. 

Arrangement of O/F  

equatorial – apical – interlayers 

Bond valence sum Global Instability Index (GII) 

OX1 – FX2 – OX3 O1: 1.83 

F2: 1.25 

O3: 1.67 

0.19 

(O/F)X1 – (O/F)X2 – OX3 O1: 1.83 

F1: 1.52 

O2: 1.54 

F2: 1.25 

O3: 1.67 

0.33 

FX1 – OX2 – OX3 F1: 0.52 

O2: 1.54 

O3: 1.67 

0.37 

OX1 – (O/F)X2 – FX3 O1: 1.84 

O2: 1.54 

F2: 1.25 

F3: 1.33 

0.27 

(O/F)X1 – OX2 – FX3 O1: 1.83 

F1: 1.52 

O2: 1.54 

F3: 1.33 

0.34 

 

19F NMR spectroscopy is a powerful tool to understand the local structure of fluoride ions in a 

compound. The assignment of the 19F resonance in La2NiO3F2 can be assisted by analyzing 

model systems for which the crystal structure is understood, as for example Sr2TiO3F2 
21-22, 28 and 

its topochemically reduced/hydride-substituted version Sr2TiO3FH0.48 compound 28. Sr2TiO3F2 is 

a diamagnetic compound, which structure has been thoroughly characterized with neutron 

diffraction and EXAFS/XANES spectroscopy. In this compound, the fluoride ions are distributed 

in a 1:1 ratio on the apical and interstitial anion sites. The 19F MAS NMR spectrum of the 

compound is shown in Figure 7 a and b. Two groups of signals at approximately -58 and -120 

ppm with an intensity ratio of ~ 50:50 can be observed, which is in agreement with the 

distribution of fluoride ions on the apical and interstitial sites. From the analysis of the spinning 

sidebands (Figure 7 a), it is apparent that the resonance at -58 ppm has a larger anisotropy. 

Hence, it should correspond to the apical anion site, which has a more distorted local geometry 

than the interstitial site. 
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This assignment of the fluoride ions to the two different sites is further supported by the 

investigation of Sr2TiO3FH0.48, obtained from chemical reduction of Sr2TiO3F2 with NaH. The 

reaction causes the substitution of fluoride by hydride in combination with a reductive 

deintercalation of fluoride only from the interstitial site only and leads to the reduction of ~ 50 % 

of the Ti4+ ([Ar] 3d0) to Ti3+ ([Ar] 3d1) . The remaining fluoride ions in Sr2TiO3FH0.48 were found to 

be located only on the apical site, as confirmed by neutron diffraction experiments. Indeed, 

strong changes were found in the 19F MAS NMR spectrum of Sr2TiO3FH0.48 (Figure 7 c). The 

signal of interstitial fluoride (-120 ppm) is absent and two new resonances are observed at -222 

ppm and -86 ppm, which match the chemical shift of NaF and SrF2 
62, both side products of the 

reduction reaction. The signal from apical fluoride bonded to Ti4+ (-58 ppm) is still present, 

indicating that not all titanium sites were reduced. Nonetheless, a third new resonance at higher 

chemical shift is present at -38 ppm, a signal that can be attributed to apical fluoride bonded to 

Ti3+. The unpaired electron in the latter should cause a paramagnetic shift for the fluoride on the 

apical position, shifting it by ∆δ=+20 ppm. 

 

Figure 7. 
19

F MAS NMR spectra of (a) Sr2TiO3F2 (MAS frequency of 10 kHz), (b) Sr2TiO3F2 (MAS frequency of 45 
kHz), (c) Sr2TiO3FH0.48 (MAS frequency of 40 kHz). Spinning sidebands marked with an asterisks. 

The 19F MAS NMR spectrum of La2NiO3F2 (Figure 8 a) shows significantly broader peaks, which 

result from paramagnetic interactions to the Ni2+ ions within the sample. The inhomogeneous 

contribution of this interaction can be partially averaged by MAS at 55 kHz; nonetheless 

considerable spinning sidebands are still present in the spectrum. The position of the isotropic 

peak can be determined by measuring the sample at different MAS frequencies (Figure 8 b) and 
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a chemical shift of -44 ppm is found for La2NiO3F2. Within the limit of resolution, we can assume 

the presence of a single fluoride site in this compound. From the value of the chemical shift, 

which is very close to the apical site (-58 to -38 ppm) of the model compounds SrTiO3F2 / 

Sr2TiO3FH0.48, respectively, we conclude that the fluoride ions are located at the apical anion site 

in La2NiO3F2. Due to the strong broadening of the NMR data, a small degree of disordering of 

fluoride ions cannot be excluded. In this respect, it should be noted that the DFT calculations 

indicate that off-center shifts should be expected for octahedra with composition NiO5F (see 

section 3.4, as also found for Sr2TiO3F2 
28). We therefore also tested a structural model, which 

allows for off-center shifts of the Ni ion in addition to the occupation of the ideal high symmetry 

site in the center of the octahedron. The model only resulted in a very small improvement of the 

fit (as does every model with an increased flexibility), and it was indicated that at least 86 % of 

the Ni ions are located on the ideal site in the center of the octahedron (Table S 1). Again, this is 

in agreement with the fluoride ions being only located on the apical anion site (X2), and oxygen 

being located on the interstitial site (X3). 

 

Figure 8: 
19

F MAS NMR spectra of (a) La2NiO3F2 (MAS frequency of 55 kHz), spinning sidebands marked with 
asterisks, (b) La2NiO3F2 (decreasing MAS frequencies from 55 to 30 kHz) and comparison to Sr2TiO3F2 (MAS 

frequency of 45 kHz). 

It is very interesting to discuss the structure in the context of other orthorhombic n = 1 

Ruddlesden-Popper type compounds A2BO4. This can be exemplified by a comparison of the 

structure of orthorhombic La2NiO4 (as determined by Rodriguez-Carvajal et al. 27) and La2NiO3F2 

(Figure 9 a). For space group no. 64, the tilting of the octahedra between neighboring layers is in 
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phase, whereas it is antiphase for space group no. 66. This results in interstitial cavities with 

identical size for space group no. 64 and in interstitial cavities with different size for space group 

no. 66 from the symmetry restrictions of both space groups. This size difference for space group 

no. 66 is well represented by the distance of the apical fluoride ions to the interstitial sites 4a and 

4b, which are 1.995(2) Å and 2.654(2) Å approximately. Regarding the sizes of the fluoride and 

oxide ions of 1.33 Å and 1.40 Å 63, this distortion avoids the formation of very short anion-anion 

distances, accompanied by the expansion of the b-axis along which the tilting of the octahedra 

mainly takes place.  

We also would like to point out that the ordering scenarios are agreeing well with symmetries 

around the stage ordering found in superstructures of oxidized La2NiO4+d 
64 or La2CuO4+d 

65 

(Figure 9 b). For such stage ordering, the layers with intercalated ions form a twinning plane, 

and only the large interstitial sites are reported to be occupied with oxide ions 64. Therefore, the 

structure of La2NiO3F2 with space group Cccm can also be understood as the stage structure of 

the n = 1 orthorhombic (Bbcm) Ruddlesden-Popper type structure with stage 1 ordering. 

 

Figure 9: (a) Comparison of the structure of orthorhombic La2NiO4 (SG no. 64 (given in the non-conventional setting 
for easier comparability), data from ref. 

27
) and La2NiO3F2 (SG no. 66). (b) Stage 3 ordering of interstitial oxide ions of 

oxidized La2NiO4+d as proposed in ref. 
64

. 
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3.2 High-temperature X-ray Diffraction Study 

In order to investigate the decomposition behavior and the temperature stability of La2NiO3F2, a 

high-temperature X-ray diffraction study was performed (Figure 10 a and b). With increasing 

temperature, reflections shift towards lower diffraction angles due to thermal lattice expansion. 

Apart from the presence of a very small amount of LaF3, LaOF is formed as a decomposition 

product at 500 °C, which is a well-known behavior found for heating of oxyfluoride materials 66. 

At temperatures above 500 °C, only LaOF can be found, indicating that amorphization of the Ni-

containing fraction is taking place.  

From the shifts of different reflections on heating (Figure 10 b), reflected in the trend of the 

determined lattice parameters (Figure 10 c), it becomes apparent that the thermal expansion is 

anisotropic. While the increase of each of the three lattice parameters is fairly linear with 

temperature (the lattice parameters obtained at 500 °C have to be excluded due to the onset of 

decomposition), a and c show a significantly stronger increase than b. Thus, the orthorhombic 

distortion decreases on heating of the compound. However, a complete transition towards the 

tetragonal crystal system cannot be achieved prior to decomposition, indicating that the ordering 

of the oxide ions on the interstitial sites shows a high thermal stability. From this, we conclude 

that there is no indication for strong disordering of oxide ions due to entropic effects on the 

interstitial sites on increasing of the temperature below the decomposition point. 
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(a)  

(b) (c)  

Figure 10: (a) High-temperature X-ray diffraction patterns of La2NiO3F2 in a temperature range from 50 °C to 500 °; 

impurity phase and decomposition products are marked with • and ♦ for LaOF and LaF3, respectively). (b) High-

temperature X-ray diffraction patterns with hkl indices for the strongest reflections of the La2NiO3F2 phase in the 2Θ 
range between 22.5° and 34.5° (positions of hkl indicators are set to their respective positions at 50 °C). (c) Relative 

increase of the lattice parameters as a function of temperature. 

 

3.3 Magnetic Characterization 

The variation of magnetic magnetization (black curve) of La2NiO3F2 upon temperature increase 

from 5 K to 350 K following cooling in zero applied field (ZFC) and applied field (FC) of µ0H = 1 T 

are given in Figure 11 a. No deviations between the ZFC and FC measurement were observed. 

Above 49 K, a paramagnetic behavior is observed. Between 150 K and 300 K, inverse 

susceptibility data (red curve) are linear and can be fitted in accordance with the Curie-Weiss 
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law. The obtained paramagnetic moment of 2.82 µB agrees well with the expected spin-only 

magnetic moment of high-spin Ni2+ (2.83 µB). A Weiss constant of Θ ≈ -648 K indicates that 

strong anitferromagnetic interactions are taking place. The presence of high-spin Ni2+ is in 

agreement with the comparably small distortion of the octahedron. 

At 49 K, a transition from paramagnetic towards antiferromagnetic behavior was observed. The 

increase of the magnetization at temperatures below 30 K suggests the contribution of a weak 

ferromagnetic component, which could originate from a magnetic canting within the compound 

on antiferromagnetic ordering 27.  

To confirm the origin of ferromagnetism below 30 K, we carried out field-dependent 

measurements at 5 K. The magnetic field was scanned from 3 T to -3 T and the magnetization 

was measured, as given in Figure 11 b. The observed weak hysteresis confirms an intrinsic 

ferromagnetic component. In addition, we observe an exchange-bias (EB) with an EB field of - 

0.17 T. The presence of such an exchange anisotropy can be explained by co-existence of 

ferromagnetic and antiferromagnetic components in the system. The predominant hard 

antiferromagnetic component pins the soft ferromagnetic component showing a shift in the 

hysteresis from origin. This shift is, however, seen to significantly reduce when measured at 

49K, due to a strong antiferromagnetic coupling at the Néel temperature and temperature 

dependent decay of the ferromagnetic component. Furthermore, a similar FC and ZFC 

temperature dependent magnetization rules out the possibility of exchange-bias via spin-glass.  

(a) (b)  

Figure 11: (a) Magnetization vs. temperature curve of La2NiO3F2 measured at µ0H = 1 T (black, FC and ZFC curves 

overlap), and inverse susceptibility vs. temperature curve of La2NiO3F2 (red), (b) Magnetization vs. magnetic field 

curve of La2NiO3F2 measured at 5 K, 49 K and 350 K; the inset shows the exchange bias observed at 5 K. 

A comparison between the magnetic behaviors of La2NiO3F2 and the parent compound 

La2NiO4+d is interesting at this point. Stoichiometric La2NiO4 orders anitferromagnetically below 

330 K, and the magnetic structure can be described in the magnetic space group Pccn with G-
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type ordering of magnetic moments within the bc plane (respectively within the tetragonal ab 

plane) 27. Such alignment of magnetic moments within the bc plane is also possible within two of 

the maximum magnetic space groups of Cccm with k = [0 0 0], being Cccm (66.491, AFM along 

z) and Ccc’m’ (66.496, AFM along y). Both models were tried and resulted in magnetic moments 

of Ni below 0.1 µB, which is not significant, and therefore in agreement with the paramagnetic 

nature at room temperature. Other magnetic ordering scenarios with k ≠ [0 0 0] at ambient 

temperature can be ruled out from the absence of additional reflections in the pattern. The 

superexchange via the apical fluoride ions appears to weaken the Ni-F-F-Ni superexchange 

interactions, which are responsible for establishing magnetic ordering between the layers.  

3.4 DFT+U Calculations 

In our previous studies 14-15, 28, we have shown that DFT calculations can also help to elucidate 

the structure of the anion sublattice, and to provide understanding for stabilities of different anion 

ordering scenarios. Therefore, different ordering scenarios were tested for La2NiO3F2. 

Interestingly, the experimentally determined anion distribution OX1 – FX2 – OX3 was not found to 

be energetically most favorable. The configurations of OX1 – (O/F)X2 – OX3 v1 and v2 were found 

to show lower energies per La2NiO3F2 formula unit (∆ = -0.06 – 0.04 eV), and a strong structural 

distortion to monoclinic symmetry. However, these energy differences are small (and “0 K 

energies”), being in the same order of magnitude than the thermal energy at synthesis 

temperature (~ 0.05 eV). Remarkably, bond valence sums calculations were able to predict the 

ordering of oxide and fluoride ions verified via the 19F NMR studies correctly, which can be 

understood from the fact that they originate from the evaluation of experimentally obtained bond 

distances.  

The structural distortions found for the structures after DFT optimization strongly differ for the 

different anion configurations. In this respect, we would like to emphasize that the OX1 – FX2 – 

OX3 configuration is the one with lowest energy while maintaining the highest possible 

orthorhombic symmetry (i.e., without transforming to monoclinic). This orthorhombic symmetry 

was only obtained for the OX1 – (O/F)X2 – FX3 v3 configuration, which has a considerably higher 

energy than the OX1 – FX2 – OX3 configuration (∆ = +0.18 eV per La2NiO3F2 formula unit, 

corresponding to ~3.5 times of the thermal energy at synthesis temperature). Combining both, 

consideration of the calculated structural distortions and energy, we conclude that the 

experimentally observed structure might be understood as the best compromise between energy 

and symmetry. 
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Further, we note that the models OX1 – (O/F)X2 – FX3 v1, v2 and v3 show strong off-centre shift of 

the Ni ion within the octahedral of composition NiO5F towards the apical oxide ion. Again, this 

can be ruled out from the refinement of XRD and NPD data with a structural model, which allows 

for off-centre displacement of the Ni cations (see section 3.1). 

Table 4: Energies obtained from DFT calculations for La2NiO3F2 for different O/F distributions on equatorial (X1), 
apical (X2), and interlayer (X3) sites. 

Arrangement of O/F  

equatorial – apical – interlayers 

Energy difference per 

La2NiO3F2 formula unit 

[eV] to the OX1 – FX2 – OX3 

configuration 

OX1 – FX2 – OX3 0 

OX1 – (O/F)X2 – FX3 v1 -0.06 

OX1 – (O/F)X2 – FX3 v2 -0.04 

OX1 – (O/F)X2 – FX3 v3 +0.18 

OX1 – (O/F)X2 – FX3 v4 +0.22 

 

 

Figure 12: Optimized structures of La2NiO3F2 calculated from DFT for different O/F distributions on equatorial (X1), 
apical (X2), and interlayer (X3) sites with corresponding lattice parameters. Unit cells are depicted along the c-axis. 

4 Conclusions 

Here, we have demonstrated that La2NiO3F2 shows an unusual ordering of anions in the 

interlayer. Whereas oxyfluoride compounds with Ruddlesden-Popper were previously found to 
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show a strong expansion of the lattice along the stacking direction of the perovskite layers, a 

channel like ordering of oxide ions on the interlayer sites results in an expansion of the lattice 

perpendicular to the stacking direction, accompanied by a strong tilting of the NiO4F2 octahedra. 

Furthermore, the compound is so far the only known oxyfluoride with Ruddlesden-Popper type 

structure, which shows preferred occupation of the interlayer sites by oxide instead of fluoride 

ions. The fluorination results in a strong decrease of the magnetic ordering temperature, which 

most likely arises from a weakening of the Ni-F-F-Ni superexchange interactions between the 

perovskite type layers due to a reduced covalency of the fluoride ion. 

Clearly, low temperature neutron diffraction studies will be required to understand the low 

temperature magnetic properties and structure of the compound in more detail. Here, it would be 

interesting to see if the ferromagnetic moment below 30 K could originate from a magnetic 

canting within an antiferromagnetic arrangement, which would be symmetry allowed for some of 

the magnetic subgroups of Cccm. 
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Table of Contents Only: La2NiO3F2 crystallizes in a new anion-ordered distortion variant of the n=1 Ruddlesden-

Popper type structure. The unprecedented ordering of oxygen anions in the interlayer leads to an expansion of the 

lattice perpendicular to the stacking direction, accompanied by a strong tilting of NiO4F2 octahedra. A weakening of Ni-

F-F-Ni superexchange interactions between the perovskite type layers due to the reduced covalency of fluoride ions 

decreases the magnetic ordering temperature strongly. 
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