1,879 research outputs found

    Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation

    Full text link
    We describe a coherent mid-infrared continuum source with 700 cm-1 usable bandwidth, readily tuned within 600 - 2500 cm-1 (4 - 17 \mum) and thus covering much of the infrared "fingerprint" molecular vibration region. It is based on nonlinear frequency conversion in GaSe using a compact commercial 100-fs-pulsed Er fiber laser system providing two amplified near-infrared beams, one of them broadened by a nonlinear optical fiber. The resulting collimated mid-infrared continuum beam of 1 mW quasi-cw power represents a coherent infrared frequency comb with zero carrier-envelope phase, containing about 500,000 modes that are exact multiples of the pulse repetition rate of 40 MHz. The beam's diffraction-limited performance enables long-distance spectroscopic probing as well as maximal focusability for classical and ultraresolving near-field microscopies. Applications are foreseen also in studies of transient chemical phenomena even at ultrafast pump-probe scale, and in high-resolution gas spectroscopy for e.g. breath analysis.Comment: 8 pages, 2 figures revised version, added reference

    Factors influencing opera company ticketing and programmatic structures

    Get PDF
    Due to declines in arts subscribership and overall attendance, especially in the field of opera, the question of how to best maintain and attract audiences has come up (Iyengar 2012a). The seasonal programmatic structure, whether a traditional season, rotating programmatic structure, or a festival model is used, can affect attendance for opera companies. Phone interviews were conducted with marketing leaders from nine Opera America member companies from across the United States, with budgets between 3,000,000and3,000,000 and 15,000,000. These interviews gathered information on programmatic structure and audience development to determine which factors contribute to financial, reputational, and attendance success.M.S., Arts Administration -- Drexel University, 201

    Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    Get PDF
    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements

    Slowing down light in a qubit metamaterial

    Get PDF
    The rapid progress in quantum information processing leads to a rising demand for devices to control the propagation of electromagnetic wave pulses and to ultimately realize universal and efficient quantum memory. While in recent years, significant progress has been made to realize slow light and quantum memories with atoms at optical frequencies, superconducting circuits in the microwave domain still lack such devices. Here, we demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide, forming a waveguide quantum electrodynamics system. We analyze two complementary approaches, one relying on dressed states of the Autler–Townes splitting and the other based on a tailored dispersion profile using the qubits tunability. Our time-resolved experiments show reduced group velocities of down to a factor of about 1500 smaller than in vacuum. Depending on the method used, the speed of light can be controlled with an additional microwave tone or an effective qubit detuning. Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures and open the door to microwave dispersion engineering in the quantum regime

    Waveguide Bandgap Engineering with an Array of Superconducting Qubits

    Get PDF
    Waveguide quantum electrodynamics offers a wide range of possibilities to effectively engineer interactions between artificial atoms via a one-dimensional open waveguide. While these interactions have been experimentally studied in the few qubit limit, the collective properties of such systems for larger arrays of qubits in a metamaterial configuration has so far not been addressed. Here, we experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control coupled to the mode continuum of a waveguide. By consecutively tuning the qubits to a common resonance frequency we observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap. Making use of the qubits quantum nonlinearity, we demonstrate control over the latter by inducing a transparency window in the bandgap region of the ensemble. The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial, thus paving the way for large-scale applications in superconducting waveguide quantum electrodynamics.Comment: 7 pages, 4 figure

    Waveguide bandgap engineering with an array of superconducting qubits

    Get PDF
    Waveguide quantum electrodynamics offers a wide range of possibilities to effectively engineer interactions between artificial atoms via a one-dimensional open waveguide. While these interactions have been experimentally studied in the few qubit limit, the collective properties of such systems for larger arrays of qubits in a metamaterial configuration has so far not been addressed. Here, we experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control coupled to the mode continuum of a waveguide. By consecutively tuning the qubits to a common resonance frequency we observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap. Making use of the qubits quantum nonlinearity, we demonstrate control over the latter by inducing a transparency window in the bandgap region of the ensemble. The circuit of this work extends experiments with one and two qubits toward a full-blown quantum metamaterial, thus paving the way for large-scale applications in superconducting waveguide quantum electrodynamics

    Slowing down light in a qubit metamaterial

    Get PDF
    The rapid progress in quantum information processing leads to a rising demand for devices to control the propagation of electromagnetic wave pulses and to ultimately realize universal and efficient quantum memory. While in recent years, significant progress has been made to realize slow light and quantum memories with atoms at optical frequencies, superconducting circuits in the microwave domain still lack such devices. Here, we demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide, forming a waveguide quantum electrodynamics system. We analyze two complementary approaches, one relying on dressed states of the Autler–Townes splitting and the other based on a tailored dispersion profile using the qubits tunability. Our time-resolved experiments show reduced group velocities of down to a factor of about 1500 smaller than in vacuum. Depending on the method used, the speed of light can be controlled with an additional microwave tone or an effective qubit detuning. Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures and open the door to microwave dispersion engineering in the quantum regime
    • …
    corecore