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The rapid progress in quantum information processing leads to a rising demand for devices to
control the propagation of electromagnetic wave pulses and to ultimately realize a universal and
efficient quantum memory. While in recent years significant progress has been made to realize
slow light and quantum memories with atoms at optical frequencies, superconducting circuits in
the microwave domain still lack such devices. Here, we demonstrate slowing down electromagnetic
waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide,
forming a waveguide quantum electrodynamics system. We analyze two complementary approaches,
one relying on dressed states of the Autler-Townes splitting, and the other based on a tailored
dispersion profile using the qubits tunability. Our time-resolved experiments show reduced group
velocities of down to a factor of about 1500 smaller than in vacuum. Depending on the method
used, the speed of light can be controlled with an additional microwave tone or an effective qubit
detuning. Our findings demonstrate high flexibility of superconducting circuits to realize custom
band structures and open the door to microwave dispersion engineering in the quantum regime.

INTRODUCTION

In the light of quantum information processing achiev-
ing control over the speed of light in artificially structured
media, slowing it down and eventually stopping the light,
has recently regained attention. This functionality is of
vital importance for the realization of long-living quan-
tum memories [1] and for controlling and synchronizing
the flow of information [2]. One of the most prominent
techniques to realize slow light is based on electromag-
netically induced transparency (EIT) - a quantum inter-
ference effect between different excitation pathways, ren-
dering an otherwise opaque medium transparent and cre-
ating a steep dispersion profile [3]. Early demonstrations
of slow light in EIT media involved vapors of sodium [4]
and rubidium atoms [5], followed by further experiments
with cold atoms coupled to nanofibers [6], and eventu-
ally by the demonstration of a highly efficient quantum
memory [7]. A promising candidate beyond atoms to
observe these effects are superconducting qubits in the
context of cavity-free waveguide quantum electrodynam-
ics (wQED). The observation of resonance florescence re-
vealed that even single qubits can have strong coupling
to propagating electromagnetic waves and show extinc-
tion coefficients close to unity [8, 9]. First demonstra-
tions of the single-qubit Autler-Townes splitting (ATS)
with ladder-type three-level systems [9, 10], showcased
their potential suitability for the EIT-related applica-
tions. However, it was subsequently argued that in
these experiments the EIT regime was not unambigu-
ously reached [11].

More recently, focus shifted towards multi-qubit sys-
tems with infinite range interactions [12, 13], super- and
subradiant polaritonic excitations [13–16], collective ATS
[14], topological edge states [17, 18], creation of non-
classical light [19], and proposals for superconducting
quantum memories [20]. Even though superconducting
wQED systems can match the requirements of large op-
tical depth and high coherence [21], slow light has been
so far realized only in the context of classical waveguides
[22]. These devices are passive, without the possibility to
in-situ control the speed of light and to ultimately realize
a quantum memory protocol.

Here, we experimentally demonstrate a first realization
of slow light in a superconducting wQED system consist-
ing of eight locally tunable transmon qubits coupled to
a one-dimensional waveguide. We engineer the required
flat band structure by using qubits directly as control-
lable dispersive elements. First, we consider the standard
case of dressed state based slow light and demonstrate
that even in the case of imperfect EIT, where the physics
is merely governed by the ATS, a moderate retardation
of the group velocities by a factor down to 1500 com-
pared to vacuum can be achieved. Second, we engineer a
similar band structure, based on detuned collective reso-
nances of the participating qubits. This allows for three
times larger efficiencies of the slow-light medium. The
demonstrated slow light effect can be used for a fixed-
delay quantum memory in superconducting wQED and
paves way to more general applications such as on de-
mand storage-and-retrieval memory for quantum infor-
mation processing.
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RESULTS AND DISCUSSION

Circuit design and properties

The qubit metamaterial presented in this work con-
sists of eight superconducting transmon qubits [23], ca-
pacitively coupled to the mode continuum of a copla-
nar waveguide, see Fig. 1 a. Each qubit has an inte-
grated SQUID loop and is thereby individually tunable
between 3 and 8 GHz by applying local magnetic flux via
a flux bias line. We fulfill the metamaterial limit of sub-
wavelength dimensions by choosing a dense qubit spac-
ing of d = 400µm, which corresponds to a fraction of the
light wavelength λ with the phase delay of ϕ = 2π

λ d =
0.05 − 0.16. As shown in former works, in such a set-
ting the qubits obtain an infinite-range photon-mediated
effective interaction, which is almost exclusively of col-
lective dissipative nature [12, 13]. For a detailed study of
the mode structure of this metamaterial, its super- and
subradiant polaritonic excitations, we guide the reader
to reference [14]. Figure 1 b shows the first three ladder-
type energy levels of the transmon qubits. If the 2 → 1
transition is driven with a microwave control tone with
the amplitude (Rabi-strength) Ωc, these levels hybridize
and split into two dressed states separated by Ωc, form-
ing the ATS [24]. For our experiments we use the ATS
of the individual qubits to calibrate the absolute value

of the control power Pc =
Ω2

c

4Γ10
~ωc [25] (see Supplemen-

tary Material). With reference to a weak probe tone and
assuming a ∝ exp(−iωt) time dependence, the reflection
coefficient of a single qubit is given by [10]:

r = − Γ10

2[γ10 − i(ω − ω10)] +
Ω2

c

2γ20−2i(ω−ω10+ωc−ω21)

(1)

The corresponding transmission coefficient is given by
t = 1 + r, referenced in this article as element of the
scattering matrix S21(ω). Here, the qubits are strongly
coupled to the waveguide, ensuring a multi-mode Pur-
cell limited average relaxation rate of Γ10/2π = 12 MHz.
The average decoherence rate of the 1 → 0 transition is
γ10/2π = (Γ10/2+Γnr)/2π = 6.9 MHz, with Γnr account-
ing for pure dephasing and radiative losses to unguided
modes. The corresponding average decoherence rate of
the 2 → 0 transition is γ20/2π = 6.9 MHz, which is here
by coincidence the same value. We note that this rate is,
in agreement with other experiments with superconduct-
ing qubits [10, 26], significantly higher than that of cold
atoms [3]. The increased rate is due to the ladder-type
level structure of the transmon, where it can be shown
that γ20 > Γ21/2 always holds [27]. This necessarily leads
to imperfect EIT since the associated dark state obtains a
finite lifetime [3]. The corresponding implications for the
creation of slow light are discussed in the following sec-
tion. The expected band structure for the metamaterial
in the lossless case (Γnr = 0, γ20 = 0) based on Eq. (1)
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Figure 1. a. Microscopic image of the eight qubit meta-
material with local flux bias lines. Both signal and control
tone propagate along the central waveguide. b. Ladder-type
level structure of the employed transmon qubits and the rel-
evant radiative relaxation (Γ10, Γ21) and decoherence rates
(γ20, γ10). If the control tone is resonant with the 2 → 1
transition, the first transmon level hybridizes, creating the
Autler-Townes splitting. c. Calculated band structure of the
metamaterial in the lossless limit for different control Rabi-
strengths Ωc. Light blue shaded areas indicate bandgaps. The
effective group velocity vg in the center band strongly depends
on Ωc.

for different values of Ωc is shown in Fig. 1 c. The ex-
pected group velocity of light vg = dω

dk in the center band
strongly depends on the control tone strength Ωc. In the
regime of small Ωc the slope of the band is almost flat,
giving rise to slowing down the electromagnetic waves in
the waveguide.

Slow light based on dressed-state Autler-Townes
splitting

In order to create a slow-light medium, the qubits are
consecutively tuned to a common resonance frequency
ω10/2π = 7.812 GHz in the vicinity of the qubits’ up-
per sweet spot. A continuous microwave control tone
is applied, driving resonantly the 2 → 1 transition at
the frequency ωc/2π = 7.533 GHz and Rabi-strength Ωc.
Figure 2 shows the collective ATS, for N = 7 resonant
qubits. For low control powers Pc → 0, only a single
bandgap of strongly suppressed transmission above ω10

is present, which gradually splits for higher Ωc into two
separate bandgaps, with a transparency window of fi-
nite transmission opening up in between (compare band
structure calculation in Fig. 1 c). In this region the phase
of the complex transmission coefficient Arg(S21(ω)) fea-
tures a steep roll-off (Fig. 2 b), indicating low group
velocities. The observed transmission coefficient is in
agreement with a numerical transfer-matrix calculation
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[14, 28], which takes into account a cable resonance
caused by impedance mismatches in the cryostat wiring.
Due to the aforementioned large 2→ 0 decoherence rate
γ20 ≈ γ10, the expected sharp EIT feature at ω10 with
near unity transmission for small Ωc is smeared out and
transmission is reduced. The expected effective group ve-
locity vg of a signal sent through the transparency win-
dow can be calculated from the phase gradient [20, 28]:

vg =

[
1

(N − 1)d

dArg(S21(ω))

dω

]−1
∣∣∣∣∣
ω=ω10

(2)

The traversal time τ = (N − 1)d/vg of a pulse through
the medium with N = 7 qubits inferred from the spec-
troscopic data of Fig. 2 a at ω = ω10 is shown in
Fig. 3 b. In good agreement with the numerical transfer-
matrix model the expected traversal time, or conversely
the effective group index ng, can be tuned over a large
range with the applied control power Pc. In contrast
to the textbook case of EIT in the limit of γ20 ≈ 0,
where τ ∝ 1/Ω2

c diverges for small Ωc [3], we observe
τ approaching a maximum of 15 ns (ng ≈ 1900) at
Pc ≈ −124 dBm before it decreases again for even lower
control tone strengths. A similar behavior was observed
in room temperature vapor of 4He [29]. An analytical
expression for the expected delay τ(ω10) in the case of
a resonant control tone can be found from the effective
dispersion relation (kd)2 ≈ ϕ2 − 2χϕ with χ = ir

1+r and
ϕ = ω

c d [30]:

τ(ω10,Ωc) ≈


(N−1)Γ10(2Ω2

c−8γ2
20)

((4γ10−2Γ10)γ20+Ω2
c)2 ϕ� χ

(N−1)Γ10(2Ω2
c−8γ2

20)

((4γ10−2Γ10)γ20+Ω2
c)3/2

√
ϕ√

8Γ10γ20
ϕ� χ

(3)
Figure 3 b shows both asymptotes of Eq. (3), corre-

sponding to the strong and weak Rabi-strength Ωc regime
(ϕ � χ, ϕ � χ). In the limit of γ20 → 0, the con-
dition ϕ � χ is always fulfilled, and the correspond-
ing τ(ω10,Ωc) is reduced to the formulas of textbook
EIT [3]. In this case we find good agreement between
the measured delays and Eq. (3). In the opposite limit
ϕ� χ, only qualitative agreement is observed. The sys-
tematic offset to the measured data is rooted in the band
structure calculation of Eq. (3), which assumes an infi-
nite metamaterial an therefore deviates, in particular for
small Ωc. More detail on the derivation of τ(ω10,Ωc) are
provided in the Supplementary Material. Formally, EIT
and ATS should be treated as two distinct, but closely
related phenomena: EIT is a destructive Fano-type in-
terference effect between two excitation pathways, which
can only occur if Ωc < ξγ10, smoothly transitioning to
the ATS-regime for Ωc > ξγ10, with two independent
resonances of the dressed state doublet [11]. The coeffi-
cient ξ = (N2 − 1)ϕ/3 is the approximate width of the
bandgap for a finite system with N < π/ϕ ≈ 20 qubits in

ba

Figure 2. a. Collective ATS of seven resonant qubits in de-
pendence on control tone power Pc. For Pc > −125 dBm, a
transparency window with finite transmission emerges around
the resonance frequency ω10 (black dashed line). The red
dashed line is a fit to the expected splitting of Ωc/2π. Purple
dotted lines mark a minimal bandwidth of 1/σ = 20 MHz of
the transparency window for time-domain experiments with
σ = 50 ns pulses. b. Absolute value and phase of the com-
plex transmission coefficient S21 for Pc = −122 dBm. Black
dotted lines are fits to a transfer-matrix model. The effective
expected group velocity vg is anti-proportional to the slope of
Arg(S21) at ω10.

units of γ10. In this work, due to large γ20, the accessible
control strengths are in the transient regime Ωc ' ξγ10.
Here, a quantitative method to distinguish between ATS
and EIT based on the Akaike’s information criterion of
Ref. [11] can not directly be applied to the measured
data, since it features an asymmetric line shape due to
the microwave background. Using the method for the
calculated single-qubit splitting based on Eq. (1) in con-
junction with the experimentally extracted qubit deco-
herence rates yields that the observed line shape is by al-
most 100 % certainty described by the ATS (not shown).

We have verified the spectroscopically inferred time de-
lays τ in pulsed time-domain measurements by using an
FPGA-based heterodyne microwave setup (see Supple-
mentary Material). Here, we generated Gaussian pulses
of width σ = 50 ns at resonant center-frequency ω10 with
a continuously applied control tone at frequency ω21 and
strength Ωc. The pulse amplitude is kept at the single
photon level (Pp < ~ω10Γ10) in order to prevent satu-
ration of the qubits. The digitized transmitted pulses
for different control tone strengths are shown in Fig. 3
a. By fitting Gaussians to the measured data we ex-
tracted the temporal position of each pulse center. The
extracted pulse arrival times were compared to a refer-
ence pulse, measured in the case of far detuned qubits,
thus giving access to the pulse delay τ . The delays mea-
sured in this way are presented in Fig. 3 b showing good
agreement with the spectroscopically inferred data and
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numerics. Due to the finite spectral width 1/σ = 20 MHz
of the Gaussian pulses (indicated by dashed purple lines
in Fig. 2 a) and that of the transparency window, the
maximal accessible delay here is limited to τ ≈ 12 ns
(ng ≈ 1500). In qualitative agreement with the transmis-
sion measurement data of Fig. 2 a, the amplitude of the
measured pulses becomes smaller when reducing the con-
trol tone amplitude. This effect is most prominent in the
sector of large delays, however exactly here a high trans-
mission is desired to realize an efficient quantum memory
protocol [31]. At maximal delay, the efficiency, i.e. the
energy ratio of the transmitted and reference pulse, is
about 16 %. Due to small average delay-bandwidth prod-
ucts of 0.2, the device under investigation appears suit-
able for a fixed-delay quantum memory [32], rather than
a general purpose on-demand storage procedure, where
the pulse has to fit spatially completely into the meta-
material for high storage efficiency [31]. Reducing the
decoherence rate γ20 would allow for significantly larger
group indices and improve the bandwidth-delay product
towards values larger than unity. Experimentally, this
can be achieved by employing Λ-type three-level systems,
such as flux- or fluxonium qubits [20].

a

b

Figure 3. a. Envelope of the detected Gaussian pulses in the
time domain for different control tone powers Pc of the N = 7
qubit ATS. The pulses are generated with a center frequency
of ω10 = 7.812 GHz and width σ = 50 ns, corresponding to the
center of the transparency window. For better visibility the
pulses are compressed by a factor of 20, where their maximum
remains at the original position. b. Experimentally extracted
delays from pulsed and spectroscopic measurements in depen-
dence on control power Pc. Pulse delays of up to 12 ns (15 ns
in spectroscopy) were achieved, corresponding to the reduc-
tion of the group velocity of 1500 (1900) compared to the
speed of light in vacuum.

Dispersion-engineered slow light

As pointed out by Shen et al. [33], ATS-like band
structures can be realized not only by dressed states, but
also equivalently by two detuned distinct resonances cou-
pled to the same mode continuum. For this approach,
which we call dispersion engineering, neither a third
qubit level nor an additional microwave control tone is
required. Here, we use the individual qubit frequency
control to tune every second qubit to a frequency f1 and
every other qubit to f2, creating two collective four-qubit
resonances. The frequency f2 = 7.882 GHz is kept con-
stant throughout the experiment, while the frequency f1

of the other four qubits is varied. The transmission S21

(Fig. 4 a, b) resembles that of the dressed state ATS in
Fig.2; the main ATS feature, being a transparency win-
dow with a steep phase roll-off between two bandgaps,
is intact. Since the large γ20 has no influence on the
first two transmon levels, the brightest of the collective
four qubit subradiant states are visible as pronounced
peaks several MHz below f1 and f2 [14] (compare Fig. 4
b). The observed line shape is in good agreement with
a numerical transfer matrix calculation. The pulse de-
lays τ and effective group indices ng, calculated from
Arg(S21(ω)) with Eq. (2) with respect to the frequency
f1, are shown in Fig. 4 c. Since the phase in the trans-
parency window shows a varying slope, an average of
the slope in a bandwidth of 10 MHz around the cen-
ter is used to estimate τ . Analogously to the previous
section, we use Gaussian pulses with σ = 50 ns to di-
rectly measure and validate the expected pulse delay τ .
The center frequency is adjusted close to (f1 + f2)/2 for
each trace. Figure 4 c compares the delay τ of pulsed
and spectroscopic measurements with numerical results
from a transfer-matrix model. Here, we find delays up to
τ = 17 ns, corresponding to group indices of ng = 1850,
which is comparable to the group indices found in the
dressed-state ATS case for a similar splitting between
the dressed states. In contrast to the ATS measurement,
we achieve an efficiency of ≈ 45 − 50 %, as the trans-
mittance of the transparency window is solely limited by
the non-radiative decoherence Γnr and not influenced by
γ20. This also implies potentially possible much higher
delays for narrower transparency windows. Even though
the dispersion-engineered approach lacks the possibility
of fast and simple control via an additional microwave
tone in contrast to the ATS, it can be used as a fixed
delay quantum memory and showcases the ability to tai-
lor the band structure on demand in superconducting
wQED. For further studies, one can think of more com-
plex band structures going beyond the capabilities of the
ATS, e.g., engineering several spectral regions of different
group indices, referred to as multi-color slow light [34].
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a b

c

Figure 4. a. Absolute transmission |S21| for two collective
four-qubit resonances at frequencies f1 and f2. The frequency
is alternated between neighboring qubits along the waveguide.
The black dashed line marks the center of the transparency
window. The purple dashed lines indicate the bandwidth of
the 50 ns Gaussian pulses. b. Transmission for a fixed detun-
ing f2− f1 = 32 MHz. The sharp peaks next to the bandgaps
correspond to subradiant four-qubit states. The steep phase
roll-off between the resonances indicates a low group veloc-
ity. Black dashed lines are fits to a numerical transfer matrix
model. c. Experimentally extracted delays from pulsed and
spectroscopic measurements in dependence on frequency f1.
Pulse delays up to 17 ns, corresponding to retardation factors
of 1850, are achieved.

SUMMARY & CONCLUSION

In this work, we demonstrated slow light in a super-
conducting waveguide QED system. A metamaterial
consisting of eight densely spaced transmon qubits was
used to engineer a band structure with a flat dispersion
profile to obtain reduced group velocities of electromag-
netic waves. Using the well-known dressed-state ATS,
we observed group velocities reduced by a factor of down
to 1500, both in spectroscopic and direct time-resolved
pulsed measurements. The maximum achievable delay
and efficiency is limited by the strong dephasing of the
2→ 0 transition, which is inherent to ladder-type three-
level systems. Moreover, we demonstrated slow light with
a tailored band structure based on distinct detuned col-
lective resonances of the qubits. At comparable retar-
dation, we observed three times larger efficiencies, not
limited by large γ20. The demonstrated slow-light meta-
material can be employed as a fixed-delay quantum mem-

ory or a tunable pulse retarder to synchronize pulses in
quantum information processors. Based on our proof-of
principle experiment, further improvements which signifi-
cantly ameliorate the device performance can be made. A
similar metamaterial based on flux or fluxonium qubits,
which feature a Λ-type level structure, is expected to
reach the EIT regime and may ultimately realize a gen-
eral purpose and on-demand superconducting quantum
memory.
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Table S1. Measureda individual qubit properties around 7.81 GHz and upper- and lower-sweet spot positions fmin
01 , fmax

01 .

Parameter Qubit 1 Qubit 2 Qubit 3 Qubit 4 Qubit 5 Qubit 6 Qubit 7 Qubit 8

Γ10/2π (MHz) 7.3 9.5 11.3 13.9 14.5 14.6 12.1 11.9

γ10/2π (MHz) 4.2 5.3 6.7 8.4 8.1 8.1 6.7 7.2

Γnr/2π (MHz) 0.52 0.56 1.0 1.36 0.83 0.83 0.65 1.3

γ20/2π (MHz)b 8.7 8.3 - 6.7 5.6 6.2 - 5.7

Ext. coeff. % 98.4 98.9 97.7 97.4 99.0 99.0 99.1 96.8

χ/2π (MHz)c 283 279 273 275 267 281 273 276

fmax
01 (GHz) 8.097 7.900 8.088 8.114 8.115 7.95 8.066 8.136

fmin
01 (GHz) 3.029 3.091 2.912 2.986 2.970 2.936 2.588 2.484

a Measured after thermal cycle of the cryostat compared to the measurements in the main text.
b γ20 was not accessible for all qubits at the given frequency, due to spurious TLS distorting the single qubit ATS.
c Measured at 7.9 GHz

Qubit characterization

Extensive details on the characterization of the individual qubits can be found in the Supplementary Material of
reference [14]. The individual qubit characteristics around 7.81 GHz are listed in table S1.

Experimental microwave setup

The used microwave setup for the time-resolved measurements is shown in Fig. S1. It is controlled by a Xilinx
ZCU111 evaluation board featuring an RFSoC architecture. This combines CPUs, an FPGA, DACs and ADCs
on a single chip. The setup is operated with custom firmware and an effective sampling rate of 1 GS/s. The
microwave pulses are generated and detected at an intermediate frequency of fIF = 115 MHz. Single-sideband mixing
with a microwave local oscillator based on IQ-mixing is employed to up- and down-convert the signal between fIF

and Gigahertz frequencies. After detection, the measured pulses are digitally downconverted from the intermediate
frequency to dc and low-pass filtered with a 5th order Butterworth filter with a 115 MHz cutoff.

Calibration of absolute power with the ATS and extraction of γ20

The Rabi strength Ωj+1j of the coupling of the j + 1 → j transition of a transmon to a single mode is given by
[9, 23]:

~Ωj+1j = 2e
Cc

CΣ
〈j + 1|n̂|j〉V ≈ 2e

Cc

CΣ

√
j + 1

(
EJ

8Ec

)1/4

Vrms = µj+1jVrms (S1)

µj+1j is denoting the dipole moment of the corresponding transition and Vrms is the root-mean square voltage of the

incoming wave (Pc =
V 2

rms

Z0
=

V 2
c

2Z0
, Z0 = 50 Ω is the impedance of the waveguide). The rate of incoming photons to

the sample is given by:

ν =
Pc

~ωj+1j
=

V 2
rms

Z0~ωj+1j
=

~Ω2
j+1j

Z0ωj+1jµ2
j+1j

(S2)

With the relaxation rate Γ10 =
ω2

10C
2
cZ0

2CΣ
this can be written as:

ν =
Ω2
j+1j

2(j + 1)Γ10
(S3)

In case of the ATS, the 2 → 1 transition is driven with a control tone. For this specific case we get the following
connection between Ωc = Ω21 and the incident power:

Pc =
Ω2

c

4Γ10
~ωc (S4)
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Figure S1. Used microwave setup for time-resolved measurements with heterodyne detection of microwave pulses.

The measured single-qubit ATS, as shown in Fig. S7 is fitted with a simple Ω = a
√
Pappl law. The calibration factor

α between the applied power Pappl and the correct incident on chip-power Pc ( Pc = αPappl) is calculated with:

α = a2 ~ωc

4Γ10
(S5)

We note that the calibration depends on the radiative relaxation rate of the qubits.

Once the power is calibrated, we extract the decoherence rate γ20 of the 2→ 0 transition. The complex reflection
coefficient of a dressed 3-level system, as derived in reference [10], is given by:

r = − Γ10

2[γ10 − i(ω − ω10)] +
Ω2

c

2γ20−2i(ω−ω10+ωc−ω21)

(S6)

Ωc is the Rabi-strength of the control tone with frequency ωc. If the probe tone is resonant with the 0→ 1 transition
(ω = ω10) and the control tone is resonant with the 1 → 2 transition (ωc = ω21) the corresponding transmission
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a b

Figure S2. a. Autler-Townes splitting of qubit 2 as a function of the applied power Pappl used to calibrate the absolute on-chip
power Pc. Red dashed line is a fit to Ω = a

√
Pappl. b. Resonant transmission (ω = ω10) as function of Pc used to extract γ20.

The orange line is a fit to S7. For both figures |S21(ω10)| is normalized to 1 for large Ωc.

coefficient of Eq. (S6) simplifies to:

t = 1−
Γ10

2γ10

1 +
Ω2

c

4γ20γ10

= 1−
Γ10

2γ10

1 + 4Γ10

4γ20γ10~ωc
Pc

(S7)

When Γ10 and γ10 are known (see table S1), a fit of Eq. (S7) to the measured trace gives an estimate for γ20, compare
figure S2 b).

The rates Γ10, γ10, and γ20 used for the numerical calculation in Fig. 3 of the main text are averaged values of
all individual qubit rates. We note that the measured decoherence rates are frequency dependent, because of the
random distribution of parasitic two-level-systems over the qubits’ flux dispersion, the varying influence of magnetic
flux noise, and the influence of standing waves in the microwave background of the cryostat. Due to this frequency
dependence, the decoherence rates are left as free fitting parameters for the numerical calculation in Fig. 4 to get a
more accurate estimate for the effective rates.

Band structure calculation and derivation of τ(Ωc) in the metamaterial limit

The band structure of an infinitely extended metamaterial, composed of three-level systems under ATS condition,
as given by Eq. (S6), can be calculated as an eigenvalue problem of the corresponding T-matrices:

T1Tϕ

(
V R1
V L1

)
= exp(±ikd)

(
V R1
V L1

)
(S8)

V
R/L
1 denote right and left propagating fields. T1 is the transfer matrix of a single qubit and Tϕ of a bare piece of

transmission line leading to a phase shift of ϕ = ω/cd. More details on the transfer matrix formalism are provided in
the Supplementary Material of Ref. [14]. The eigenvalue problem of Eq. (S8) reduces to:

cos(kd) =
1

2
Tr(T1Tϕ) = cos

(ω
c
d
)

+
ir

1 + r
sin
(ω
c
d
)

(S9)

Solving Eq. (S9) for ω(k) gives access to the dispersion relation and band structure. In the large wavelength-limit,
meaning kd� 1, ω/cd� 1 this equation can be approximated as:

1− 1

2
(kd)2 ≈ 1− 1

2
(
ω

c
d)2 +

ir

1 + r

ω

c
d (S10)

(kd)2 ≈ ϕ2 − 2χϕ with χ =
ir

1 + r
, ϕ =

ω

c
d (S11)
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In order to obtain an analytical expression for vg = Re(
(
dk
dω

)−1
), Eq. (S11) can be approximated in the limits of large

and small control tone strengths Ωc, translating to ϕ� χ and ϕ� χ. For the first case, Eq. (S11) simplifies to:

k ≈ ω

c
− ir

1 + r

1

d
(S12)

The inverse group velocity:

1

vg
=
dk

dω
≈ Re

(
1

c
− 1

d

d

dω

(
ir

1 + r

))
(S13)

at ω = ω10 this equates to:

1

vg

∣∣∣∣
ω=ω10

=
1

c
+

1

d

Γ10(2Ω2
c − 8γ2

20)

((4γ10 − 2Γ10)γ20 + Ω2
c)2

(S14)

The pulse delay of an array of N qubits with a spacing d is then given by:

τ =
(N − 1)d

vg
(S15)

We note that for a small decoherence rate of the 2 → 0 transition, γ20 ≈ 0, the group velocity of textbook EIT can
be recovered from Eq. (S14):

1

vg
=

1

c
+

1

d

2Γ10

Ω2
c

(S16)

For the second case, i.e. ϕ� χ, Eq. S11 simplifies to:

k2 ≈ −2ϕχ

d2
(S17)

dk

dω
≈ dχ

dω

√
−ϕ/2
√
χd

(S18)

Using the principal square root, the inverse group velocity at ω = ω10 is then given by:

1

vg
= Re

(
dk

dω

∣∣∣∣
ω=ω10

)
=

1

d

Γ10(2Ω2
c − 8γ2

20)

((4γ10 − 2Γ10)γ20 + Ω2
c)

3/2

√
ϕ

√
8Γ10γ20

(S19)

Normalization of spectroscopic data

All spectroscopic data are normalized by S21(ω) = Smeas
21 (ω)/(aSbg

21 (ω)). Here, Sbg
21 (ω) is the measured transmission

coefficient of the background which is obtained when all qubits are far detuned. a is a constant factor accounting for
interference effects of the signal with the background and fluctuations of the amplifier gain.
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