924 research outputs found

    The Role of Extractives On Short-Term Creep In Compression Parallel To The Grain of Pai Wood (Afzelia Africana Smith)

    Get PDF
    The creep behavior of extracted and unextracted blocks of Pai wood (Afzelia africana Smith) was examined in compression parallel to grain to determine the influence of both within-lumen and wall-resident extractives. It was concluded that the lumen-located extractive fractions have no significant effect on short-term creep, while the removal of wall-resident components permitted significant and accelerated creep development. However, as the cell walls of extracted wood were more reactive to moisture, the results of creep tests of this material must be interpreted with caution. It is proposed that the mechanism of influence on compressive creep is one of extractives stiffening the cell walls

    Pulmonary O2 uptake kinetics and motor unit recruitment in young people

    Get PDF
    The primary objective of this thesis was to examine the influence of alterations in muscle recruitment on pulmonary O2 uptake (VO2) kinetics during exercise above the gas exchange threshold (GET) in young people. In the first experimental chapter, the phase II time constant (τ) slowed over a 2-yr period in 14-16 yr old boys (25 ± 5 s vs. 30 ± 5 s, P = 0.002) and there was a greater relative VO2 slow component amplitude (Rel. A’2 (%)] during heavy-intensity exercise (9 ± 5% vs. 13 ± 4%, P = 0.036). In the second study, ‘work-to-work’ transitions yielded similar phase II VO2 kinetics during unloaded-to-moderate exercise (U→M) between 11-12 yr old boys and teenagers (19 ± 5 s vs. 22 ± 7 s, P = 0.32) but the phase II τ was significantly lengthened in the latter group at the onset of moderate-to-very heavy exercise (M→VH: 30 ± 5 s vs. 45 ± 11 s, P = 0.011). There were no differences in the phase II τ between teenagers and adult men during M→VH exercise (P = 0.46). In the third study, increasing pedal rate from 50 rev•min-1 to 115 rev•min-1 significantly (P 0.05). The fourth study reported that a reduced relative VO2 slow component amplitude in younger boys compared to men (11 ± 4% vs. 16 ± 3%, P = 0.015) coincided with a lower percentage change in the integrated electromyogram (iEMG) of the m. vastus lateralis from minute 2 to minute 6 of exercise (ΔiEMG6-2: 7 ± 25% vs. 49 ± 48%, P = 0.030), suggesting that alterations in motor unit recruitment might be involved in restricting the O2 cost of exercise above the primary amplitude in children compared to adults. The final experimental chapter tested this hypothesis, but no statistically significant differences were reported for the relative VO2 slow component amplitude between 10-12 yr old boys and men (15 ± 7% vs. 19 ± 4%, P = 0.145). In boys, an excess VO2 temporally coincided with a significant increase in the transverse relaxation time (T2) of the m. vastus lateralis from the VO2 slow component time delay (SCtd) to minute 6 of exercise (41.5 ± 2.4 ms vs. 45.2 ± 2.3 ms, P = 0.001), thereby consistent with the notion that delayed muscle fibre activation might contribute to the development of the VO2 slow component in youth. In conclusion, this thesis has demonstrated that maturational changes in the VO2 kinetic response to heavy-intensity exercise are extended into adolescence. During intense submaximal exercise, the recruitment of higher-order (type II) muscle fibres might be principally involved in modulating VO2 kinetics as children mature but this effect is attenuated in teenage subjects engaged in regular endurance training

    Colorado

    Get PDF

    Dimensonial Instability of Cement-Bonded Particleboard: Behavior of Cement Paste And Its Contribution To The Composite

    Get PDF
    This paper examines the behavior of cement paste under constant and changing relative humidity (RH) conditions to evaluate the contribution of cement paste to the dimensional instability of cement-bonded particleboard (CBPB). It was found that the trend of changes in cement paste was very similar to, but the degree of changes was different from, that of CBPB at various exposures. The comparison of the results of cement paste with those of CBPB indicated that the inclusion of wood chips accelerated the carbonation reaction, and that carbonation of the cement paste exerted additional stresses on the wood chips in CBPB; this resulted in a slightly higher increase in mass but an appreciably greater decrease in the dimension of CBPB under constant 20°C/65% RH. The cement paste had considerably lower changes in mass and dimension with a single change in RH between 35 and 90% RH (except for the increase in mass on adsorption at 90% RH) compared to CBPB. The inflection in the relationship between mass and dimensional changes of cement paste was more distinct than that of CBPB with the change of mass per unit length change after the "inflection point" being about eight times higher than that of CBPB on desorption. Under cyclic RH, the response to the level of RH and the history of sorption was different between cement paste and CBPB, with the difference in dimensional change between adsorption and desorption being more significant, while the adsorption at 90% RH for the cement paste was considerably higher. Fitting of models previously developed to the data permitted the prediction of accumulated change of the cement paste with a good degree of fit and established the suitability of using these formulae for modelling CBPB as a composite to be described in a further paper in this series

    Fewer Flops at the Top: Accuracy, Diversity, and Regularization in Two-Class Collaborative Filtering

    Full text link
    In most existing recommender systems, implicit or explicit interactions are treated as positive links and all unknown interactions are treated as negative links. The goal is to suggest new links that will be perceived as positive by users. However, as signed social networks and newer content services become common, it is important to distinguish between positive and negative preferences. Even in existing applications, the cost of a negative recommendation could be high when people are looking for new jobs, friends, or places to live. In this work, we develop novel probabilistic latent factor models to recommend positive links and compare them with existing methods on five different openly available datasets. Our models are able to produce better ranking lists and are effective in the task of ranking positive links at the top, with fewer negative links (flops). Moreover, we find that modeling signed social networks and user preferences this way has the advantage of increasing the diversity of recommendations. We also investigate the effect of regularization on the quality of recommendations, a matter that has not received enough attention in the literature. We find that regularization parameter heavily affects the quality of recommendations in terms of both accuracy and diversity

    Longitudinal Changes in the Oxygen Uptake Kinetic Response to Heavy-Intensity Exercise in 14- to 16-Year-Old Boys

    Get PDF
    There is another ORE record for this publication: http://hdl.handle.net/10036/3830This study examined longitudinal changes in the pulmonary oxygen uptake (p(V) over dotO(2)) kinetic response to heavy-intensity exercise in 14-16 yr old boys. Fourteen healthy boys (age 14.1 +/- 0.2 yr) completed exercise testing on two occasions with a 2-yr interval. Each participant completed a minimum of three 'step' exercise transitions, from unloaded pedalling to a constant work rate corresponding to 40% of the difference between the (p(V) over dotO(2)) (2), at the gas exchange threshold and peak (p(V) over dotO(2)) , (40% A). Over the 2-yr period a significant increase in the phase II time constant (25 5 vs. 30 +/- 5 s; p = .002, omega(2) = 0.34), the relative amplitude of the (p(V) over dotO(2)) slow component (9 +/- 5 vs. 13 +/- 4%; p = .036, omega(2) = 0.14) and the(p(V) over dotO(2)) gain at end-exercise (11.6 +/- 0.6 vs. 12.4 +/- 0.7 mL.min(-1).W-1; p < .001, omega(2) = 0.42) were observed. These data indicate that the control of oxidative phosphorylation in response to heavy-intensity cycling exercise is age-dependent in teenage boys

    Inorganic nitrate supplementation improves muscle oxygenation, O2 uptake kinetics and exercise tolerance at high but not low pedal rates

    Get PDF
    Copyright © 2014, Journal of Applied PhysiologyWe tested the hypothesis that inorganic nitrate (NO3-) supplementation would improve muscle oxygenation, pulmonary O2 uptake (VO2) kinetics and exercise tolerance (Tlim) to a greater extent when cycling at high compared low pedal rates. In a randomized, placebo-controlled, cross-over study, seven subjects (mean ± SD, age 21 ± 2 yr, body mass 86 ± 10 kg) completed severe-intensity step cycle tests at pedal cadences of 35 rpm and 115 rpm during separate 9 day supplementation periods with NO3--rich beetroot juice (BR; providing 8.4 mmol NO3-∙day-1) and placebo (PLA). Compared to PLA, plasma nitrite concentration increased 178% with BR (P0.05). However, when cycling at 115 rpm, muscle [O2Hb] was higher at baseline and throughout exercise, phase II VO2 kinetics was faster (47 ± 16 s vs. 61 ± 25 s; P<0.05) and Tlim was greater (362 ± 137 s vs. 297 ± 79 s; P<0.05) with BR compared to PLA. These results suggest that short-term BR supplementation can increase muscle oxygenation, expedite the adjustment of oxidative metabolism and enhance exercise tolerance when cycling at a high, but not a low, pedal cadence in healthy recreationally-active subjects. These findings support recent observations that NO3- supplementation may be particularly effective at improving physiological and functional responses in type II muscle fibers

    Cationic vacancy induced room-temperature ferromagnetism in transparent conducting anatase Ti_{1-x}Ta_xO_2 (x~0.05) thin films

    Full text link
    We report room-temperature ferromagnetism in highly conducting transparent anatase Ti1-xTaxO2 (x~0.05) thin films grown by pulsed laser deposition on LaAlO3 substrates. Rutherford backscattering spectrometry (RBS), x-ray diffraction (XRD), proton induced x-ray emission (PIXE), x-ray absorption spectroscopy (XAS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) indicated negligible magnetic contaminants in the films. The presence of ferromagnetism with concomitant large carrier densities was determined by a combination of superconducting quantum interference device (SQUID) magnetometry, electrical transport measurements, soft x-ray magnetic circular dichroism (SXMCD), XAS, and optical magnetic circular dichroism (OMCD) and was supported by first-principle calculations. SXMCD and XAS measurements revealed a 90% contribution to ferromagnetism from the Ti ions and a 10% contribution from the O ions. RBS/channelling measurements show complete Ta substitution in the Ti sites though carrier activation was only 50% at 5% Ta concentration implying compensation by cationic defects. The role of Ti vacancy and Ti3+ was studied via XAS and x-ray photoemission spectroscopy (XPS) respectively. It was found that in films with strong ferromagnetism, the Ti vacancy signal was strong while Ti3+ signal was absent. We propose (in the absence of any obvious exchange mechanisms) that the localised magnetic moments, Ti vacancy sites, are ferromagnetically ordered by itinerant carriers. Cationic-defect-induced magnetism is an alternative route to ferromagnetism in wide-band-gap semiconducting oxides without any magnetic elements.Comment: 21 pages, 10 figures, to appear in Philosophical Transaction - Royal Soc.

    The effect of baseline metabolic rate on pulmonary O₂ uptake kinetics during very heavy intensity exercise in boys and men

    Get PDF
    addresses: Children's Health and Exercise Research Centre, College of Life and Environmental Sciences, University of Exeter, UK.Copyright © 2012 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Respiratory Physiology and Neurobiology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Respiratory Physiology and Neurobiology, 2012, 180 (2-3), pp. 223 – 229 DOI: 10.1016/j.resp.2011.11.013This study tested the hypothesis that pulmonary VO₂ kinetics would be slowed during 'work-to-work' exercise in adults but not in children. Eight boys (mean age=12.5 ± 0.5 years) and nine men completed very heavy step transitions initiated from either 'unloaded' pedalling (U→VH) or unloaded-to-moderate cycling (i.e. U→M to M→VH). The phase II τ was significantly (p<0.05) lengthened in M→VH compared to U→M and U→VH in boys (30 ± 5 vs. 19 ± 5 vs. 21 ± 5 s) and men (49 ± 14 vs. 30 ± 5 vs. 34 ± 8 s). In U→VH, a greater relative VO₂ slow component temporally coincided with an increased linear iEMG slope in men compared boys (VO₂ slow component: 16 ± 3 vs. 11 ± 4%; iEMG slope: 0.19 ± 0.24 vs. -0.06 ± 0.14%, p<0.05). These results suggest that an age-linked modulation of VO₂ kinetics might be influenced by alterations in muscle fibre recruitment following the onset of exercise
    corecore