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Abstract 

This study tested the hypothesis that pulmonary 2OV  kinetics would be slowed during 

‘work-to-work’ exercise in adults but not in children. Eight boys (mean age = 12.5 ± 0.5 

yr) and nine men completed very heavy step transitions initiated from either ‘unloaded’ 

pedalling (U→VH) or unloaded-to-moderate cycling (i.e. U→M to M→VH). The phase 

II τ was significantly (p<0.05) lengthened in M→VH compared to U→M and U→VH 

in boys (30 ± 5 vs. 19 ± 5 vs. 21 ± 5 s) and men (49 ± 14 vs. 30 ± 5 vs. 34 ± 8 s). In 

U→VH, a greater relative 2OV  slow component temporally coincided with an increased 

linear iEMG slope in men compared boys ( 2OV  slow component: 16 ± 3 vs. 11 ± 4%; 

iEMG slope: 0.19 ± 0.24 vs. -0.06 ± 0.14%, p<0.05). These results suggest that an age-

linked modulation of 2OV  kinetics might be influenced by alterations in muscle fibre 

recruitment following the onset of exercise.   
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Introduction 

Following the onset of step exercise, the arrival of hypoxic blood at the pulmonary 

capillaries heralds an exponential rise in pulmonary O2 uptake ( 2OV ) that has been 

shown to reflect the kinetics of muscle O2 consumption ( 2OVm  ) in humans (Krustrup, 

Jones, Wilkerson, Calbet, & Bangsbo, 2009) and is reported to be speeded in children 

relative to adult or teenage counterparts [see Armstrong and Barker (2009) for a 

review]. Furthermore, there is an elevated O2 cost or ‘gain’ during the initial 

exponential phase that coincides with an attenuated slow rise in 2OV  above the primary 

phase amplitude (i.e. the 2OV  slow component) in young people exercising above the 

gas exchange threshold (GET) (Armon, Cooper, Flores, Zanconato, & Barstow, 1991; 

Fawkner & Armstrong, 2004; Williams, Carter, Jones, & Doust, 2001). The 

physiological factors that mediate age differences in 2oV  kinetics are unresolved with 

few experimental data available.           

 

Previous studies have reported that step exercise transitions initiated from an elevated 

baseline work rate elicits a lengthened phase II time constant (τ) and increases the total 

2OV  gain compared to metabolic transitions imposed from rest or ‘unloaded’ pedalling 

(Brittain, Rossiter, Kowalchuk, & Whipp, 2001; Dimenna, Bailey, Vanhatalo, Chidnok, 

& Jones, 2010; DiMenna, Wilkerson, Burnley, & Jones, 2008; Hughson & Morrissey, 

1982; MacPhee, Shoemaker, Paterson, & Kowalchuk, 2005; Wilkerson & Jones, 2006, 

2007). One interpretation, yet to be refuted, is that transitions to a higher metabolic rate 

preceded by a light bout of exercise might amplify the metabolic properties of higher-

order (type IIa and IIx) motor units on the pulmonary O2 signal under these 



circumstances. Based on the assumption that higher-order (type II) muscle fibres have 

slower 2OV  kinetics and an increased metabolic cost per unit of force production (Crow 

& Kushmerick, 1982; Krustrup, et al., 2008), differences in muscle fibre recruitment 

might therefore be linked to faster phase II 2OV  kinetics and a reduced 2OV  slow 

component in youth.   

 

It has been proposed, at least in adults and more recently in teenagers (Breese, 

Armstrong, Barker, & Williams, 2011), that alterations in motor unit recruitment might 

also modulate the 2OV  slow component during exercise above the GET [see Jones et al. 

(in press) for a recent review]. For example, an increase in 2OV  from the 3
rd

 to 6
th

 

minute of constant work rate exercise has been shown to temporally coincide with 

markers of muscle activity (Endo, et al., 2007; Saunders, et al., 2000) and additional 

muscle fibre recruitment (Krustrup, Soderlund, Mohr, & Bangsbo, 2004). It is therefore 

pertinent that an augmented O2 utilisation over the primary phase and subsequent 

reduction in the 2OV  slow component amplitude has been reported to coincide with 

reciprocal changes in the measured profile of the integrated electromyogram (iEMG) in 

quadriceps muscle (Bailey, Vanhatalo, Wilkerson, Dimenna, & Jones, 2009; Burnley, 

Doust, Ball, & Jones, 2002; c.f. Scheuermann, Hoelting, Noble, & Barstow, 2001). 

However, to our knowledge, no previous study has quantified whether similar 

alterations in motor unit recruitment might contribute to the observed differences in the 

primary and slow component amplitudes between adults and children.                

 

The primary purpose of this study was to utilise the work-to-work exercise model in 

combination with surface iEMG recordings in order to explore the influence of putative 



alterations in muscle fibre recruitment on 2OV  kinetics during exercise in boys aged 11-

13 yr and men. It was hypothesised that increasing the baseline work rate prior to very 

heavy-intensity transitions would lengthen the phase II 2OV  τ and increase the total 

2OV  gain in men, but would not alter the same 2OV  kinetic parameters in boys. We 

also hypothesised that unloaded-to-very heavy-intensity transitions would increase the 

primary 2OV  gain and reduce the relative 2OV  slow component in boys compared to 

men with a lower rate of change in iEMG activity over time in the former compared to 

latter age group.   

 

Methods 

Participants  

Eight boys (mean ± SD age 12.5 ± 0.5 y, stature 1.49 ± 0.06 m, mass 38.9 ± 4.1 kg) and 

nine men (mean ± SD age 26.0 ± 2.9 y, stature 1.77 ± 0.09 m, mass 72.1 ± 8.6 kg) 

volunteered to participate in this study. Somatic maturity was estimated in the boys 

using sex-specific regression algorithms to determine a maturity offset score from age at 

peak height velocity (PHV) using anthropometric measurements (Mirwald, Baxter-

Jones, Bailey, & Beunen, 2002). These estimates yielded a mean offset score from PHV 

in the boys of -2.3 ± 0.5 yr (range -1.6 to -2.9). Written, informed consent was obtained 

from each participant and the children’s parent(s) / guardian(s) prior to the 

commencement of the study after verbal and written explanations of the study’s aims, 

risks, and procedures were given. The procedures employed in this study were approved 

by the Institutional Research Ethics Committee. Participants were instructed to visit the 

laboratory in a rested and well hydrated state having also abstained from food or 



caffeine in the preceding 3 hr. In total, boys and men completed nine and five exercise 

tests respectively over a 4 wk period at approximately the same time of day (± 2 hr). 

 

Experimental procedures 

On the first visit, subjects performed a ramp incremental exercise test to voluntary 

exhaustion for determination of peak 2OV  and the gas exchange threshold (GET). After 

3-min baseline cycling at 15 W, the work rate increased continuously by 15 W·min
-1

 in 

boys and 30 W·min
-1

 in men to attain a test duration of approximately 8-12 min in each 

individual. Participants were instructed to select a preferred pedal rate of between 70-80 

rev·min
-1

 and maintain this cadence throughout the test. The peak 2OV  was taken as the 

highest recorded 10-s stationary average value during the incremental test which has 

been shown recently to reflect a maximum 2OV  in 93% of young people performing 

ramp exercise (Barker, Williams, Jones, & Armstrong, 2009). The GET was determined 

non-invasively as the first disproportionate increase in CO2 production ( 2COV ) relative 

to the increase in 2OV  [i.e. the V-slope method (1986)], and subsequently verified from 

visual inspection of the increase in the ventilatory equivalent for 2OV  ( EV / 2OV ) with 

no increase in EV / 2COV .  

 

The power outputs that would require 90% of the GET (moderate-intensity exercise) 

and 60% of the difference (Δ) between the GET and peak 2OV  (very heavy-intensity 

exercise, Δ60%) were estimated for each participant. Each participant then returned to 

the laboratory to perform one of two step exercise protocols: 1) 3-min of cycling at 15 

W, followed by 6-min of very heavy-intensity cycling (U→VH); and 2) 3-min of 



cycling at 15 W, followed by 4-min of moderate-intensity cycling (U→M), followed by 

6-min of very heavy-intensity cycling (M→VH). A schematic illustration of the 

experimental protocol is shown in figure 1. Each child and adult completed four and 

two repetitions of protocols 1) and 2), respectively. Each protocol was presented to 

participants in random order with each laboratory visit separated by ≥ 48 hr. 

 

All exercise tests were performed on an electronically-braked cycle ergometer (Lode 

Excalibur Sport, Groningen, the Netherlands) with the seat height, handlebar height, and 

crank length adapted to each subject and subsequently maintained throughout the testing 

period. Pulmonary gas exchange and ventilation were measured and displayed breath-

by-breath during each exercise trial (Metalyser 3B Cortex, Biophysik, Leipzig, 

Germany). Gas fractions of O2 and CO2 were drawn continuously from a face mask-

turbine assembly following calibration with gases of known concentration. Expired 

volume was measured using a DVT turbine digital transducer which was manually 

calibrated using a 3-L syringe (Hans Rudolph, Kansas City, MO) before each test. All 

calibration procedures were repeated before each experimental test. Heart rate (HR) was 

recorded every breath during all exercise tests using short-range radiotelemetry (Polar 

S610, Polar Electro Oy, Kempele, Finland).    

 

Neuromuscular activity of the right leg m. vastus lateralis was measured using surface 

EMG. The right leg was initially abraded and cleaned to enhance the muscle electrical 

signal and graphite snap electrodes (Unilect 40713, Unomedical, Stonehouse, UK) were 

adhered to the skin surface in a bipolar arrangement (interelectrode distance: 40 mm) 

positioned at the midway point between the greater trochanter and lateral epicondyle. A 



ground electrode was also placed on the m. rectus femoris bisecting the active electrodes 

with an elastic bandage wrapped around the participant’s leg to prevent displacement of 

the electrodes during cycling. The EMG signal was recorded using a ME3000PB 

Muscle Tester (Mega Electronics).  

 

EMG measurements at a sampling frequency of 1000 Hz were recorded throughout all 

exercise tests. The bipolar signal was amplified (amplifier input impedance > 1 MΩ), 

and data were collected online in raw form and stored on a personal computer using 

MegaWin software (Mega Electronics). The raw EMG data were subsequently exported 

as an ASCII file and digitally filtered using Labview 8.2 (National Instruments, 

Newbury, UK). Initially, the signals were filtered with a 20-Hz high-pass, second-order 

Butterworth filter to remove contamination from movement artefacts. The signal was 

then rectified and low-pass filtered at a frequency of 50 Hz to produce a linear envelope. 

The average iEMG was calculated for 15-s time bins throughout exercise with these 

values normalized to the average measured during 15-180 s of cycling at 15 W before 

the initial step transition. Therefore, all iEMG data are presented as a percentage of the 

initial ‘unloaded’ cycling phase. Data from repeat trials were averaged, with the 

ΔiEMG3-bl response defined as the difference between the average from 165-180 s and 

the average value recorded during baseline pedalling for each condition. We also used 

regression analysis in order to quantify the linear time vs. iEMG slope from the 2OV  

slow component time delay to end-exercise ( 2TD6iEMG ) during U→VH and M→VH 

exercise.          

 

 



Data analysis procedures 

The breath-by-breath 2OV  data from each step exercise bout were initially examined to 

exclude errant breaths by removing values lying more than four standard deviations 

from the local mean determined using a 5-breath rolling average. Filtered 2OV  data 

were subsequently linearly interpolated to provide second-by-second values and, for 

each individual, identical repetitions of each exercise condition were time aligned to the 

start of exercise and averaged together to form a single data set for analysis.  

 

The first 15 s of data after the onset of exercise were deleted to remove the phase I 

(cardio-dynamic) response, and the phase II portion of the 2oV  response was modelled 

using the non-linear equation:  

 

Δ 2OV  (t) = Δ 2OV · (1 – e 
– (t – TD)/τ

)      (Eq. 1) 

 

where Δ 2OV  (t), Δ 2OV , TD and τ represent the value of 2OV  at a given time (t), the 

amplitude change in 2oV  from baseline to its asymptote, time delay and the time 

constant of the response, respectively. In order to identify an optimal fitting window 

with which to estimate parameters of the phase II response, a purpose-designed software 

program developed with LabVIEW (National Instruments, Newbury, UK) was used. 

The fitting window was iteratively widened by 1 s intervals, starting from a 60 s fitting 

window and finishing with a fitting window that encompassed the entire data set 

(Rossiter, et al., 2001). The estimated τ for each fitting window was plotted against time 

to allow the beginning of the 2OV  slow component to be determined through visual 



inspection. The onset of the 2OV  slow component was defined as the point at which a 

plateau in the estimated τ was followed by a progressive increase in the estimated τ. The 

phase II parameter estimates from Eq. 1 were then resolved by least-squares non-linear 

regression (GraphPad Prism, GraphPad Software, San Diego, CA). The amplitude of the 

2OV  slow component was calculated as the difference between the mean of the last 30 s 

of exercise and the phase II asymptote and expressed in relative terms against the 2oV  

at end exercise. To provide information on the ‘overall’ 2OV  kinetics [mean response 

time (MRT)], Eq. 1 with TD constrained to 0 s (i.e. no delay term) was fit from the 

onset to the end of exercise. For all conditions the functional gain of the primary 2OV  

response was calculated by dividing the asymptotic primary phase amplitude by the 

increment in work rate above baseline (Δ 2OV /ΔWR). Likewise, the end-exercise 2OV  

gain was calculated using a similar technique.  

 

HR kinetics was also modelled for each condition within a fitting window that excluded 

any slow phase in the HR response with the TD parameter in Eq. 1. constrained to t = 0 

s (i.e. monoexponential model with no delay).   

 

Statistical Analysis  

Mean differences in 2OV , iEMG, and HR parameters were examined using a two-way 

repeated-measures ANOVA with Bonferroni adjusted post hoc tests used in order to 

locate statistically significant differences between and within groups. Pearson product-

moment correlation coefficients were used to investigate relationships between the 



parameters of 2OV , HR, and iEMG. All results are presented as means ± SD with 

rejection of the null hypotheses accepted at an alpha level of 0.05.  

 

Results 

The subjects’ peak 2OV  was 1.94 ± 0.14 L·min
-1

 and 3.25 ± 0.62 L·min
-1

 in boys and 

men respectively, with the GET occurring at a similar fraction of peak 2OV  in both 

groups (Boys: 50 ± 3 vs. Men: 45 ± 8 %). Based on the ramp exercise responses, the 

work rates calculated to require 90% of the GET and Δ60% were 42 ± 4 and 115 ± 7 W 

in boys and 101 ± 19 and 230 ± 28 W in men. 

 

2OV  kinetics  

Table 1 presents the participants’ 2OV  kinetic responses for each condition. An 

example 2OV  response for a typical child and adult participant in each exercise 

condition is shown in figure 2. Group mean 2OV  responses at the onset of U→VH and 

M→VH exercise in boys are presented in figure 3. Step exercise was initiated from an 

elevated baseline 2OV  in M→VH compared to U→M and U→VH exercise in both 

groups (p < 0.001). The phase II 2OV  τ was slower in M→VH compared to the other 

exercise conditions in both boys and men (p < 0.028). However, phase II 2OV  kinetics 

were not different between U→M and U→VH exercise in boys (p = 0.26) or men (p = 

0.64). Boys had a faster phase II τ compared to men in each exercise condition (p < 

0.007).   

 



The primary 2OV  gain was reduced in U→VH and M→VH compared to U→M in boys 

(p < 0.04) but there were no significant differences for this parameter across exercise 

conditions in men (p > 0.114). During U→VH exercise, there were no significant group 

differences in the primary 2OV  gain (p = 0.10), however, the relative 2OV  slow 

component was increased in men compared to boys (p = 0.022). The absolute 2OV  slow 

component amplitude was also reduced in M→VH compared to U→VH within men (p 

= 0.033). The total 2OV  gain increased from U→M to U→VH in men (p = 0.006) with 

this value further extended in M→VH compared to other exercise conditions in adult 

subjects (p = 0.003). By contrast, there were no differences in the total 2OV  gain 

between conditions in boys (p > 0.99). 

 

HR kinetics 

Table 2 presents the mean HR responses to exercise in each condition. Group mean HR 

responses following the onset of U→VH and M→VH in boys are presented in figure 3.  

Baseline HR was increased prior to the onset of M→VH exercise in boys and men 

compared to the other conditions (p < 0.001). The HR τ was not significantly different 

between U→VH and M→VH exercise in either boys (p = 0.51) or men (p = 0.63). 

Relative (%) changes in the phase II 2OV  τ between U→VH and M→VH were not 

significantly correlated with alterations in HR kinetics in boys (r = 0.55, p = 0.16) or 

men (r = -0.56, p = 0.19).    

 

iEMG activity 



Group mean iEMG responses following the onset of step exercise are presented in 

figure 4 for each condition. Baseline pedalling during M→VH significantly increased 

iEMG activity in both groups (Boys: 192 ± 69 vs. Men: 237 ± 64%) compared to other 

exercise conditions (p < 0.022) with a reduced ΔiEMG3-bl response in M→VH relative 

to U→VH in boys (205 ± 87 vs. 316 ± 105%, p = 0.021) and men (206 ± 79 vs. 335 ± 

148%, p = 0.006). Figure 5 presents iEMG responses during U→VH exercise in a 

representative child and adult subject. Two-way ANOVA revealed a significant age × 

time interaction effect for iEMG activity during U→VH exercise (p = 0.002). In men, 

follow-up post hoc tests located significant increases in iEMG from 60 s to 180 s (406 ± 

145 vs. 434 ± 148%, p = 0.018) and from 180 s to 360 s (434 ± 148 vs. 468 ± 146%, p = 

0.027) but there were no differences in iEMG across time points within boys (p > 0.21). 

Linear regression revealed a significantly greater 2TD6iEMG slope during U→VH in 

men compared to boys (0.19 ± 0.24 vs. -0.06 ± 0.14%, p = 0.022) but there were no 

group differences for this parameter in M→VH (0.11 ± 0.19 vs. 0.08 ± 0.12%, p = 

0.63). The relative 2OV  slow component amplitude was not correlated to the 

2TD6iEMG slope during U→VH and M→VH in either boys (r = 0.08 vs. -0.39, p > 

0.34) or men (r = 0.11 vs. 0.63, p > 0.07).   

 

Discussion 

The principle original finding of this investigation was that step transitions to very 

heavy-intensity exercise initiated from an elevated baseline work rate resulted in altered 

phase II 2OV  kinetics independent of age compared to transitions elicited from 

unloaded pedaling. Contrary to our hypothesis, ‘work-to-work’ transitions extended the 

phase II τ in boys and men, however, increases in the total 2OV  gain were confined to 



adult subjects in this condition compared to U-M and U-VH exercise. Furthermore, a 

lower relative 2OV  slow component amplitude during constant work rate exercise 

above the GET coincided with a reduced rate of change in iEMG over time in boys 

compared to men. These findings provide novel insight into the physiological factors 

linked to an age dependent modulation of 2OV  kinetics during intense submaximal 

exercise.  

 

The Fick principle dictates that pulmonary 2OV   (and by extension 2OVm  ) kinetics is 

influenced by the rate of muscle O2 delivery and peripheral factors linked to O2 

utilisation during step transitions from a lower to higher metabolic rate. In the case of 

the former, it has been suggested that an elevated pre-transition work rate (and thus HR) 

might slow the adjustment in cardiac output ( Q ) and hence accentuate an O2 supply 

limitation to 2OV  kinetics under these circumstances (Hughson & Morrissey, 1982; 

MacPhee, et al., 2005). It is therefore pertinent that a lengthened phase II τ from 

U→VH to M→VH was not associated with any concomitant alterations in HR kinetics 

with no significant differences reported in the primary HR τ between these two 

conditions in boys. Assuming a minimal contribution from alterations in stroke volume 

on changes in Q  from the onset of M→VH exercise (Bearden & Moffatt, 2001), the 

present results suggest that phase II 2OV  kinetics were unlikely restricted by a slower 

adaptation in cardiac output ( Q ) and hence bulk O2 delivery across the work-to-work 

transient in children. These findings are consistent with previous studies in adults 

(DiMenna, et al., 2008; Wilkerson & Jones, 2006) and therefore lend further support to 

the notion that intracellular factors principally limit 2OV  kinetics at the onset of upright 



cycling above the GET in youth (Barker, Jones, & Armstrong, 2010). However, the 

extent to which spatial differences in matching O2 supply to the rate of O2 utilisation (

2OQ / 2OV ) influenced 2OV  kinetics during work-to-work exercise is unclear from the 

present study.  

 

Recent demonstrations that the τ for phase II 2OV  and primary [PCr] kinetics were not 

speeded during work-to-work transitions following prior exercise has been interpreted 

to suggest that muscle fibres with a limited capacity to utilise O2 may be predominantly 

recruited at the onset of exercise in this condition (Dimenna, Fulford, et al., 2010; 

DiMenna, et al., 2008). This supposition is based on an orderly recruitment of motor 

units in relation to size and the intensity of muscle contractile activity (Henneman & 

Mendell, 1981). For example, smaller motoneurones that innervate fewer muscle fibres 

with a greater mitochondrial volume and/or oxidative enzyme activity (i.e. type I motor 

units) are recruited initially at low force outputs (i.e. during the U→M condition in the 

present study).  Conversely, depolarisation of the higher-order (type II) motor units 

requires an increased level of excitatory input, for example, as the requirement for 

muscle force production is increased (i.e. during VH exercise). From the present study, 

this might predict that U→VH transitions recruited a heterogeneous population of 

muscle fibres (with varying individual τ values) following the onset of exercise in boys 

and men. Conversely, initiating step exercise from an elevated work rate might have 

reduced the total number of muscles fibres recruited in this condition to those positioned 

higher in the recruitment hierarchy (i.e. consistent with a reduced ΔiEMG3-bl response in 

M→VH compared to U→VH).  Higher-order (type II) fibres are reported to have a 

reduced microvascular O2 pressure head, slower 2OV  kinetics, and an increased O2 per 



unit of tension development compared to type I fibres (Behnke, McDonough, Padilla, 

Musch, & Poole, 2003; Crow & Kushmerick, 1982; Krustrup, et al., 2008; McDonough, 

Behnke, Padilla, Musch, & Poole, 2005). However, due to ethical restrictions, we were 

unable to establish the extent to which differences in muscle fibre recruitment directly 

impacted on 2OV  kinetics between exercise conditions. 

 

Consistent with previous studies (Breese, et al., 2010; Fawkner & Armstrong, 2004; 

Williams, et al., 2001), U→VH transitions yielded faster phase II 2OV  kinetics in 

younger compared to older counterparts. Although the mechanisms are unknown, the 

previous demonstration of a negative correlation between the percentage of type I 

muscle fibres and the phase II τ in adults (Pringle, et al., 2003) has been interpreted to 

suggest that differences in muscle fibre recruitment might be linked to age differences 

following the onset of heavy/very heavy exercise (Armstrong & Barker, 2009). We 

therefore utilised the work-to-work model in order to explore the proposal than 

children’s phase II 2OV  kinetics might be less amenable to alterations in muscle fibre 

recruitment when contractile activity is increased prior to the initiation of step exercise. 

This did not manifest, since step transitions from U→M to M→VH yielded a 

comparable relative slowing of the phase II τ between boys and men (58% vs. 63%, 

respectively). However, it is interesting to note that dividing a full U→VH transition 

into two discrete step bouts (i.e. U→M and M→VH) yielded faster phase II 2OV  

kinetics in boys compared to men in each step. This might predict a longer τ in men 

relative to boys if similar muscle fibre pools recruited in U→M and M→VH were to 

contribute to the external power output (and hence influence the rise in 2OV ) from the 

onset of U→VH exercise. Whilst muscle fibre recruitment cannot be established from 



the present study, the demonstration that glycogen content is reduced in single type I 

and II muscle fibres following the onset of intense (80% peak 2OV ) cycling exercise in 

adults (Krustrup, et al., 2004) is, at least in part, consistent with this proposal. 

 

 An implicit assumption based on the aforementioned muscle fibre recruitment profile is 

that the phase II τ would be lengthened during exercise above compared to below the 

GET if the metabolic properties of the higher-order (type II) muscle fibres were 

involved in modulating the 2OV  response earlier into the transition. Contrary to this 

notion, similar phase II 2OV  kinetics between U→M and U→VH exercise in boys (τ = 

19 s vs. 21 s) suggests that the phase II τ is independent of exercise intensity (at least for 

work rates spanning the moderate-to-very heavy-intensity domains) in young people 

(Lai, et al., 2008; Williams, et al., 2001). We reported similar results in men, although it 

is conceivable that large inter-subject variability in the parameter estimates combined 

with small sample sizes might have reduced the statistical power necessary to detect 

meaningful differences (Poole & Jones, 2005). However, assuming that transitions from 

unloaded pedalling to Δ60% recruited a large proportion of the total muscle fibre pool 

in our subjects (Sargeant, 1999), it is possible to reconcile 2OV  responses in the 

M→VH condition with a lower relative 2OV  slow component amplitude during U→VH 

exercise in boys compared to men. For example, it has been suggested that the 

protracted response of earlier recruited muscle fibres with slower 2OV  kinetics might be 

involved in creating a 2OV  slow component of delayed onset (Wilkerson & Jones, 

2007). It is therefore pertinent that M→VH increased the total 2OV  gain (39%) relative 

to U→M in men, but there were no differences between conditions for this parameter in 



boys. This might predict that higher-order muscle fibres if recruited following the onset 

of U→VH exercise could have extended the rise in 2OV  above the phase II asymptote 

in men compared to boys. (Note, however, in accord with this model that faster 2OV  

kinetics in earlier recruited fibres would predict a shorter 2OV  slow component TD in 

boys compared to men which was not present in U→VH)    

 

Alternatively, acceptance that the 2OV  slow component is elicited after an independent 

time delay (Barstow & Mole, 1991) is consistent with the notion that the delayed 

activation of muscle fibres might be principally linked to increasing the O2 cost of the 

external power output as exercise proceeds (Endo, et al., 2007; Krustrup, et al., 2004; 

Whipp, 1994). Therefore, a novel finding from the present investigation was that a 

lower relative 2OV  slow component amplitude coincided with a reduced rate of change 

in iEMG of the m. vastus lateralis in boys compared to men during U→VH exercise. 

These results might be interpreted to suggest that a lower rate of fatigue development in 

youth subjects negated the requirement for either increased motor unit firing frequency 

and/or recruitment of previously inactive muscle fibres in order to sustain constant work 

rate exercise. However, the possibility that interrogation of superficial electrical activity 

rendered the iEMG signal insensitive to locating spatial differences in muscle activation 

patterns between boys and men cannot be discounted. Furthermore, it is also important 

to consider that increases in iEMG from 60 s to 180 s preceded the onset of a slow rise 

in 2OV  during U→VH exercise (TD2 = 155 s) in men with no correlation reported 

between the 2TD6iEMG  slope and the relative 2OV  slow component amplitude in either 

age group. Previous reports that markers of muscle activity are associated both 



temporally and in magnitude with the 2OV  slow component (Borrani, et al., 2001; 

Endo, et al., 2007; Saunders, et al., 2000; Shinohara & Moritani, 1992) were therefore 

not corroborated by the present study.  

 

Conclusion 

This study combined work-to-work exercise transitions with measurements of the 

integrated electromyogram (iEMG) in order to explore the putative factors involved in 

modulating 2OV  kinetics in relation to age. Step transitions to very heavy exercise 

initiated from an elevated baseline work rate lengthened the phase II τ in men compared 

to boys and extended the overall 2OV  gain within adults only compared to transitions 

elicited from unloaded pedalling. Furthermore, an elevated 2OV  slow component 

during unloaded-to-very heavy exercise was accompanied by an increased surface 

iEMG activity of the m. vastus lateralis in men compared to boys. These findings are 

consistent with the notion that age related differences in 2OV  kinetics are linked to 

alterations in muscle fibre recruitment following the onset of very heavy-intensity 

exercise.                     
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Figure Legends 

 

Fig. 1. Schematic illustration of the experimental protocol including each exercise 

condition.   

 

Fig. 2. 2OV  kinetic responses to moderate- and very heavy-intensity exercise in a 

representative child (●) and adult (○) subject. Solid grey lines denote the phase II model 

fit in each condition. The onset of step exercise is indicated by the vertical dotted line.  

 

Fig. 3. Mean 2OV  and HR responses (upper and lower panels, respectively) following 

the onset of U→VH (●) and M→VH (○) exercise in boys. The data are normalised to 

the end-exercise amplitude minus the averaged value measured during baseline 

exercise. 

 

Fig. 4. Mean ± S.E. integrated electromyogram (iEMG) response following the onset of 

step exercise in boys (closed bars) and men (open bars). The data are normalised to the 

averaged ‘unloaded’ value and are presented as the difference (Δ) above baseline 

pedalling to the 3
rd

 min of exercise in each condition. *Significantly different from 

U→M condition. #Significantly different from U→VH condition (both p < 0.05). 

 

Fig. 5. Muscle iEMG response in a representative child (●) and adult (○) subject during 

U→VH exercise. The data are fitted using a linear function from the 2OV  slow 

component time delay to the end of exercise in each subject.                 

 



Table 1 2OV   kinetics during U→M, U→VH, and M→VH exercise in boys and men. 

  Boys (n = 8)  Men (n = 9) 

Variable  ANOVA U→M U→VH M→VH  U→M U→VH M→VH 

2OV bl (L·min
-1

) 
c
P < 0.001 0.57 ± 0.05† 0.59 ± 0.07† 0.91 ± 0.08*#†  0.83 ± 0.12 0.82 ± 0.12 1.54 ± 0.25*# 

1TD  (s) b
P = 0.040 12 ± 3 11 ± 3 9 ± 2*  12 ± 6 12 ± 6 8 ± 6# 

1  (s) ab
P < 0.001 19 ± 5† 21 ± 5† 30 ± 5*#†  30 ± 5 34 ± 8 49 ± 14*# 

1A  (L·min
-1

) c
P < 0.001 0.34 ± 0.04† 0.99 ± 0.11*† 0.64 ± 0.07*#†  0.70 ± 0.23 1.83 ± 0.28* 1.28 ± 0.27*# 

Gp (mL·min
-1

·W
-1

) 
c
P = 0.008 10.6 ± 1.1† 9.5 ± 1.0* 9.1 ± 0.8*  8.5 ± 1.4 8.7 ± 0.4 9.9 ± 1.4 

TD2 (s) NS - 172 ± 26 161 ± 44  - 155 ± 22 175 ± 30 

A’2 (L·min
-1

) 
c
P = 0.049 - 0.12 ± 0.05† 0.12 ± 0.06†  - 0.36 ± 0.12 0.24 ± 0.07# 

Rel. A’2 (%) 
a
P = 0.048 - 11 ± 4† 15 ± 7  - 16 ± 3 16 ± 6 

2OV tot (L·min
-1

) 
c
P < 0.001 0.91 ± 0.08† 1.70 ± 0.12*† 1.67 ± 0.13*†  1.53 ± 0.26 3.01 ± 0.43* 3.06 ± 0.44* 

Gtot (mL·min
-1

·W
-1

) 
c
P = 0.003 10.6 ± 1.1† 10.7 ± 1.0 10.7 ± 1.2  8.5 ± 1.4 10.4 ± 0.6* 11.8 ± 1.0*# 

MRT (s) 
c
P = 0.046 31 ± 9† 40 ± 9*† 54 ± 9*#†  46 ± 9 66 ± 15* 83 ± 17*# 

Data are presented as mean ± SD. AVOVA, two-way repeated measures ANOVA results: 
a
significant main effect for age; 

b
significant main effect for condition; 

c
significant age × condition interaction; NS no significant differences found (P > 0.05). Bonferroni adjusted paired comparisons: Significantly different from U→M 

condition: *P < 0.05. Significantly different from U→VH condition: #P < 0.05. Significant within-condition age difference: †P < 0.05. 2OV bl , mean 2OV  during 

baseline pedalling; τ1, TD1, A1, time constant, time delay and asymptotic amplitude of the phase II 2OV  response (derived from Eq. 1); TD2, A’2,  time delay and 

amplitude of the 2OV  slow component; Gp, Gtot, gain (Δ 2OV /ΔWR) of the primary response and at end exercise; MRT, mean response time. 

 

 



Table 2 HR kinetics during U→M, U→VH, and M→VH exercise in boys and men.   

  Boys (n = 8)  Men (n = 9) 

Variable ANOVA U→M U→VH M→VH  U→M U→VH M→VH 

HRbl (beats·min
-1

) 

a
P = 0.010 

b
P < 0.001 

101 ± 8† 101 ± 9† 122 ± 8 *#†  83 ± 13 85 ± 13 110 ± 12*# 

HR τ (s) 
b
P < 0.001 28 ± 13 35 ± 8* 40 ± 11*  32 ± 12 39 ± 12 46 ± 16* 

HRtot (beats·min
-1

) 

a
P = 0.043 

b
P < 0.001 

123 ± 8† 179 ± 10* 179 ± 11*  109 ± 14 165 ± 16* 167 ± 15* 

ΔHR (beats·min
-1

) 
b
P < 0.001 22 ± 3 79 ± 8* 58 ± 9*#  26 ± 8 80 ± 9* 57 ± 5*# 

Data are presented as mean ± SD. AVOVA, two-way repeated measures AVOVA results. See Table 1 for explanation of statistical analyses. HRbl, mean HR during 

baseline pedalling; HR τ, time constant for HR; HRtot, HR at end-exercise; ΔHR, difference between HRbl and HRtot.   
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