1,152 research outputs found

    A Newton Solver for Micromorphic Computational Homogenization Enabling Multiscale Buckling Analysis of Pattern-Transforming Metamaterials

    Full text link
    Mechanical metamaterials feature engineered microstructures designed to exhibit exotic, and often counter-intuitive, effective behaviour. Such a behaviour is often achieved through instability-induced transformations of the underlying periodic microstructure into one or multiple patterning modes. Due to a strong kinematic coupling of individual repeating microstructural cells, non-local behaviour and size effects emerge, which cannot easily be captured by classical homogenization schemes. In addition, the individual patterning modes can mutually interact in space as well as in time, while at the engineering scale the entire structure can buckle globally. For efficient numerical macroscale predictions, a micromorphic computational homogenization scheme has recently been developed. Although this framework is in principle capable of accounting for spatial and temporal interactions between individual patterning modes, its implementation relied on a gradient-based quasi-Newton solution technique. This solver is suboptimal because (i) it has sub-quadratic convergence, and (ii) the absence of Hessians does not allow for proper bifurcation analyses. Given that mechanical metamaterials often rely on controlled instabilities, these limitations are serious. To address them, a full Newton method is provided in detail in this paper. The construction of the macroscopic tangent operator is not straightforward due to specific model assumptions on the decomposition of the underlying displacement field pertinent to the micromorphic framework, involving orthogonality constraints. Analytical expressions for the first and second variation of the total potential energy are given, and the complete algorithm is listed. The developed methodology is demonstrated with two examples in which a competition between local and global buckling exists and where multiple patterning modes emerge.Comment: 34 pages, 17 figures, 1 table, 1 algorithm, abstract shortened to fulfill 1920 character limi

    In-gas-cell laser ionization spectroscopy in the vicinity of 100Sn: Magnetic moments and mean-square charge radii of N=50-54 Ag

    Full text link
    In-gas-cell laser ionization spectroscopy studies on the neutron deficient 97-101Ag isotopes have been performed with the LISOL setup. Magnetic dipole moments and mean-square charge radii have been determined for the first time with the exception of 101Ag, which was found in good agreement with previous experimental values. The reported results allow tentatively assigning the spin of 97,99Ag to 9/2 and confirming the presence of an isomeric state in these two isotopes, whose collapsed hyperfine structure suggests a spin of 1/2 . The effect of the N=50 shell closure is not only manifested in the magnetic moments but also in the evolution of the mean-square charge radii of the isotopes investigated, in accordance with the spherical droplet model predictions

    The effect of ozone exposure on the release of eicosanoids in guinea-pig BAL fluid in relation to cellular damage and inflammation

    Get PDF
    The observed effects after ozone exposure strongly depend on ozone concentration and exposure time. We hypothesized that depending on the O3 exposure protocol, mainly either an oxidant damage or an inflammation will determine the O3 toxicity. We compared two different ozone exposure protocols: an acute exposure (3 ppm 2 h) for studying the oxidant damage and an exposure (1 ppm 12 h) where an inflammatory component is also probably involved. We measured LDH activity and protein and albumin exudation as markers for cellular damage. After the acute exposure an increase in LDH activity was measured and after exposure to 1 ppm ozone for 12 h the exudation of protein and albumin was also enhanced. The histological examinations showed a neutrophilic inflammatory response only after exposure to 1 ppm ozone for 12 h. The acute exposure protocol resulted in an increased release of PGE2, PGD2, PGF2α and 6-ketoPGF1α whereas exposure to 1 ppm ozone for 12 h led to an additional release of LTB4. No effects were measured on the release of TxB2 and LTC4/D4/E4. These changed amounts of eicosanoids will probably contribute to the ozone-induced lung function changes

    Improved Precision Measurement of the Casimir Force

    Get PDF
    We report an improved precision measurement of the Casimir force. The force is measured between a large Al coated sphere and flat plate using an Atomic Force Microscope. The primary experimental improvements include the use of smoother metal coatings, reduced noise, lower systematic errors and independent measurement of surface separations. Also the complete dielectric spectrum of the metal is used in the theory. The average statistical precision remains at the same 1% of the forces measured at the closest separation

    The acquisition of Sign Language: The impact of phonetic complexity on phonology

    Get PDF
    Research into the effect of phonetic complexity on phonological acquisition has a long history in spoken languages. This paper considers the effect of phonetics on phonological development in a signed language. We report on an experiment in which nonword-repetition methodology was adapted so as to examine in a systematic way how phonetic complexity in two phonological parameters of signed languages — handshape and movement — affects the perception and articulation of signs. Ninety-one Deaf children aged 3–11 acquiring British Sign Language (BSL) and 46 hearing nonsigners aged 6–11 repeated a set of 40 nonsense signs. For Deaf children, repetition accuracy improved with age, correlated with wider BSL abilities, and was lowest for signs that were phonetically complex. Repetition accuracy was correlated with fine motor skills for the youngest children. Despite their lower repetition accuracy, the hearing group were similarly affected by phonetic complexity, suggesting that common visual and motoric factors are at play when processing linguistic information in the visuo-gestural modality

    Complete roughness and conductivity corrections for the recent Casimir force measurement

    Full text link
    We consider detailed roughness and conductivity corrections to the Casimir force in the recent Casimir force measurement employing an Atomic Force Microscope. The roughness of the test bodies-a metal plate and a sphere- was investigated with the Atomic Force Microscope and the Scanning Electron Microscope respectively. It consists of separate crystals of different heights and a stochastic background. The amplitude of roughness relative to the zero roughness level was determined and the corrections to the Casimir force were calculated up to the fourth order in a small parameter (which is this amplitude divided by the distance between the two test bodies). Also the corrections due to finite conductivity were found up to the fourth order in relative penetration depth of electromagnetic zero point oscillations into the metal. The theoretical result for the configuration of a sphere above a plate taking into account both corrections is in excellent agreement with the measured Casimir force

    Association of histological features with laryngeal squamous cell carcinoma recurrences:a population-based study of 1502 patients in the Netherlands

    Get PDF
    BACKGROUND: Recurrences remain an important problem in laryngeal squamous cell carcinoma. Little has been described about histological characteristics of the primary laryngeal tumor that may be associated with recurrences. Identifying risk factors for recurrences might help in adapting treatment or follow-up. Using real-life population-based data, we aimed to identify histological features of the primary tumor associated with recurrences and overall survival. MATERIAL AND METHODS: Demographic, clinical and treatment information on all first primary invasive laryngeal tumors diagnosed in 2010–2014 (N = 3705) were extracted from the population-based nationwide Netherlands cancer registry (NCR) and linked to PALGA, the nationwide Dutch pathology registry, to obtain data on histological factors and recurrences. For a random 1502 patients histological information i.e., keratinization, perineural invasion (PNI+), vascular invasion (VI+), growth pattern, degree of differentiation, extracapsular spread (ECS+), cartilage- and bone invasion and extralaryngeal extension, was manually extracted from narrative pathology reports and analyzed for locoregional recurrence and overall survival using cox regression analysis. RESULTS: In total, 299 patients developed a locoregional recurrence and 555 patients died. Keratinization (HR = 0.96 (95%CI: 0.68–1.34) p = 0.79), two or three adverse characteristics (PNI+, VI+, non-cohesive growth) (HR = 1.38 (95% CI: 0.63–3.01) p = 0.42), and ECS+ (HR = 1.38 (95% CI: 0.48–4.02) p = 0.55) were not associated to recurrence. For death, also no significant association was found. CONCLUSION: In this population-based real-life dataset on laryngeal carcinoma in the Netherlands, histological factors were not associated with locoregional recurrences or overall survival, but future studies should investigate the role of these features in treatment decisions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-022-09533-0

    Identification of Anchor Genes during Kidney Development Defines Ontological Relationships, Molecular Subcompartments and Regulatory Pathways

    Get PDF
    The development of the mammalian kidney is well conserved from mouse to man. Despite considerable temporal and spatial data on gene expression in mammalian kidney development, primarily in rodent species, there is a paucity of genes whose expression is absolutely specific to a given anatomical compartment and/or developmental stage, defined here as ‘anchor’ genes. We previously generated an atlas of gene expression in the developing mouse kidney using microarray analysis of anatomical compartments collected via laser capture microdissection. Here, this data is further analysed to identify anchor genes via stringent bioinformatic filtering followed by high resolution section in situ hybridisation performed on 200 transcripts selected as specific to one of 11 anatomical compartments within the midgestation mouse kidney. A total of 37 anchor genes were identified across 6 compartments with the early proximal tubule being the compartment richest in anchor genes. Analysis of minimal and evolutionarily conserved promoter regions of this set of 25 anchor genes identified enrichment of transcription factor binding sites for Hnf4a and Hnf1b, RbpJ (Notch signalling), PPARγ:RxRA and COUP-TF family transcription factors. This was reinforced by GO analyses which also identified these anchor genes as targets in processes including epithelial proliferation and proximal tubular function. As well as defining anchor genes, this large scale validation of gene expression identified a further 92 compartment-enriched genes able to subcompartmentalise key processes during murine renal organogenesis spatially or ontologically. This included a cohort of 13 ureteric epithelial genes revealing previously unappreciated compartmentalisation of the collecting duct system and a series of early tubule genes suggesting that segmentation into proximal tubule, loop of Henle and distal tubule does not occur until the onset of glomerular vascularisation. Overall, this study serves to illuminate previously ill-defined stages of patterning and will enable further refinement of the lineage relationships within mammalian kidney development

    Low-energy Coulomb excitation of 62^{62}Fe and 62^{62}Mn following in-beam decay of 62^{62}Mn

    Get PDF
    Sub-barrier Coulomb-excitation was performed on a mixed beam of 62^{62}Mn and 62^{62}Fe, following in-trap β\beta^{-} decay of 62^{62}Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418~keV, which has been tentatively associated to a (2+,3+)1g.s.+(2^{+},3^{+})\rightarrow1^{+}_{g.s.} transition. This fixes the relative positions of the β\beta-decaying 4+4^{+} and 1+1^{+} states in 62^{62}Mn for the first time. Population of the 21+2^{+}_{1} state was observed in 62^{62}Fe and the cross-section determined by normalisation to the 109^{109}Ag target excitation, confirming the B(E2)B(E2) value measured in recoil-distance lifetime experiments.Comment: 9 pages, 10 figure

    Taenia solium Cysticercosis, Irian Jaya, Indonesia

    Get PDF
    Centers for Disease Control and Prevention, Toni, Wandra ; Akira, Ito ; Hiroshi, Yamasaki ; Thomas, Suroso ; Sri S. Margono, Emerging Infectious Diseases, 9(7), 2003, 884-885. publishe
    corecore