28 research outputs found

    Pterodactyl: The Development and Performance of Guidance Algorithms for a Mechanically Deployed Entry Vehicle

    Get PDF
    Pterodactyl is a NASA Space Technology Mission Directorate (STMD) project focused on developing a design capabilityfor optimal, scalable, Guidance and Control (G&C) solutions that enable precision targeting for Deployable Entry Vehicles(DEVs). This feasibility study is unique in that it focuses on the rapid integration of targeting performance analysis withstructural &packaging analysis, which is especially challenging for new vehicle and mission designs. This paper will detailthe guidance development and trajectory design process for a lunar return mission, selected to stress the vehicle designsand encourage future scalability. For the five G&C configurations considered, the Fully Numerical Predictor-CorrectorEntry Guidance (FNPEG) was selected for configurations requiring bank angle guidance and FNPEG with Uncouple

    Mid-Lift-To-Drag Ratio Rigid Vehicle 6-DOF EDL Performance Using Tunable Apollo Powered Guidance

    Get PDF
    The Mid-Lift-to-Drag ratio Rigid Vehicle (MRV) is a candidate in the NASA multi-center effort to determine the most cost effective vehicle to deliver a large-mass payload to the surface of Mars for a human mission. Products of this effort include six-degree-of-freedom (6DoF) entry-to-landing trajectory performance studies for each candidate vehicle. These high fidelity analyses help determine the best guidance and control (G&C) strategies for a feasible, robust trajectory. This paper presents an analysis of the MRV's G&C design by applying common entry and descent associated uncertainties using a Fully Numerical Predictor-corrector Entry Guidance (FNPEG) and tunable Apollo powered descent guidance

    Mid Lift-to-Drag Ratio Rigid Vehicle 6-DoF Performance for Human Mars Entry, Descent, and Landing: A Fractional Polynomial Powered Descent Guidance Approach

    Get PDF
    Defining a feasible vehicle design and mission architecture capable of reliably delivering apayload of 20 metric tons (mt) or more is a great challenge for landing humans on Mars. TheMid Lift-to-Drag Rigid Vehicle (MRV), a rigid decelerator studied in NASAs Entry, Descent,and Landing Architecture Study (EDLAS), has shown to be a viable vehicle candidate forfuture human Mars missions. As the vehicle concept matures, models of increasing fidelity areadded to the six-degree-of-freedom (6DoF) EDL simulation. This paper presents 6DoFsimulation results using model updates for vehicle mass properties, fineness ratio, andaerodynamic-propulsive interactions. Additionally, an assessment of the Fractional-Polynomial Powered Descent Guidance (FP2DG) performance is presented, and the vehicleperformance is compared with the Tunable Apollo Powered Descent Guidance (TAPDG).Finally, Monte Carlo results of the vehicle design trades are presented

    The Emotional Intelligence of Successful African American Entrepreneurs

    Get PDF
    African American entrepreneurs in Houston, TX, lack the emotional intelligence required to be self-employed and remain in business. The purpose of this qualitative interview study was to gain a robust understanding of what strategies African American entrepreneurs can adopt to increase emotional intelligence, which will aid them in remaining in business beyond the first 5 years. The central research question focused on common understandings of the strategies African-American entrepreneurs in Houston, TX, adopt to increase their emotional intelligence such that it contributes to them remaining in business beyond the initial 5 years. The conceptual framework that grounded the study was the emotional intelligence theory. Data were collected from semi-structured interviews with a purposeful sample consisting of 15 African American entrepreneurs from Houston, TX who have been in business for a minimum of 5 years. The interviews consisted of open-ended questions. A thematic analysis was conducted on 15 interviews. Eight themes were developed from the data analysis: emotional intelligence, leadership styles, emotional reactions, maturity level, training, business sustainability, communication, and flexibility. Consistent emotional intelligence training emerged as useful in African American entrepreneurs\u27 business sustainability. The potential implications for positive social change stem from African American entrepreneurs developing more sustainable organizations. The findings of this study may be used by stakeholders and organizational leaders to provide the opportunity to build more emotionally intelligent organization

    Pterodactyl: An Uncoupled Range Control Approach to Fully Numerical Predictor-Corrector Entry Guidance

    Get PDF
    Entry, descent, and landing (EDL) has been identified as a core area of investment in NASA's Strategic Technology Investment Plan (NASA STIP). STIP lists the space technologies needed to help achieve NASA's science, technology, and exploration goals across the agency. Within the EDL core area, deployable hypersonic decelerators, also known as deployable entry vehicles (DEVs), have been identified as an area of investment, due to its potential to revolutionize payload delivery methods to Earth and other planets. These vehicles, which can deploy their heat shields or alter their shape before entry, exploit an increased and more effective drag ratio by using less mass than traditional blunt body vehicles with rigid aeroshells. DEVs like Adaptive Deployable Entry and Placement Technology (ADEPT) and Hypersonic Inflatable Aerodynamic Decelerator (HIAD) have demonstrated the capability of transporting the equivalent science payloads of blunt body rigid aeroshells, while using a significantly smaller diameter when stowed within a launch vehicle. While DEVs' increased energy dissipation for less mass is an attractive feature, their ability to contract and expand would require advancements in the current state-of-the-art guidance and control (G&C) architectures used by traditional rigid vehicles. Pterodactyl, a project funded by NASA's Space Technology Mission Directorate (STMD), aims to provide feasible integrated G&C solutions for DEVs, complete with optimized vehicle designs and packaging analyses. Structural and aerodynamic analyses for the explored control systems suggested a need for a bank angle guidance algorithm, a heritage guidance approach that has been used in many entry precision targeting vehicles, as well as an additional need for the development of a non-bank angle guidance. For this reason, Pterodactyl will consider four different G&C configurations during its design phase: i) a reaction control system for bank (sigma) control, ii) a mass movement system for angle of attack (alpha) sideslip (beta) control, iii) flaps for alpha - beta control, and iv) flaps for sigma control. To increase the applicability of each proposed integrated G&C architecture, an 11 km/s lunar return demonstration mission is selected to stress the developed technology capability. The Lifting Nano-ADEPT (LNA) vehicle is chosen as the DEV to demonstrate the integrated solutions. This paper will detail the trajectory design for a lunar return mission, using the validated bank control guidance algorithm Fully Numerical Predictor-Corrector Entry Guidance (FNPEG) and a newly developed guidance algorithm: FNPEG Uncoupled Range Control (URC). FNPEG-URC diverges from traditional bank angle guidances by producing alpha and beta commands to thereby decouple downrange and crossrange control. This presentation will discuss the development and overall performance of FNPEG and FNPEG-URC for each of the four G&C configurations. Successful G&C configurations are defined as those that can deliver payloads to the intended descent and landing site while abiding by trajectory constraints in the face of dispersions

    Pterodactyl: Integrated Control Design for Precision Targeting of Deployable Entry Vehicles

    Get PDF
    Deployable Entry Vehicles (DEVs) enable in-situ scientific exploration at destinations with atmospheres across the solar system. Because they stow in a compact form and deploy only when ready to enter the atmosphere, DEVs relax the volume constraint imposed by rigid aeroshells. This work seeks to do for a DEV what the Wright Brothers did to propel modern day aviation: develop the guidance and control (G&C) methods that will make maneuvering and precision landing of DEV a reality. The Pterodactyl project objective is to deliver an integrated G&C methodology for a DEV, based on a detailed analysis that utilizes a Multi-disciplinary, Design, Analysis and Optimization (MDAO) framework. The current state-of-the-art for blunt body entry, G&C is rooted in the precision landing of vehicles such as Mars Science Laboratory (MSL) and Apollo, which used a propulsive reaction control system (RCS) to steer. Recent research has taken a particular interest in non-propulsive control for DEVs, including direct force control (angle of attack modulation via control surfaces or mass movement) and drag modulation (discrete change in ballistic coefficient). Using the MDAO framework that includes a guidance and control model to explore multiple control concepts for a DEV will shed light on the best design approach for these vehicles. In Pterodactyl, we will complete this study for a novel DEV concept, and then we will fabricate a functional prototype to help validate the design. The project is expected to down-select to a final control architecture by the end of 2018, and complete fabrication of the prototype by the end of 2019.The DEV chosen for detailed study in this project is the Adaptable Deployable Entry and Placement Technology (ADEPT). ADEPT uses a revolutionary 3D-woven carbon fabric that is foldable, can serve as primary structure, and can survive the extreme heating environment of atmospheric entry. The specific configuration of ADEPT under investigation is called Lifting Nano-ADEPT (LNA). LNA is designed for secondary payloads missions that require precision landing either for scientific objectives at a target destination or for payload recovery at Earth.The MDAO framework being created through this research, called COBRA-Pt (Composite Beam Roll-Up Solar Array-Prototype), will combine three critical elements of the system design: a guidance algorithm with Monte Carlo, a parametric control model, and vehicle geometry details. Novel control models being studied are deployable aerodynamic surfaces as well as shape morphing. These concepts will be compared at the system level with a more traditional propulsive RCS by comparing several key performance parameters. Upon completion of the design study, a functional prototype of LNA will be fabricated that will include the integration of guidance software and relevant control actuators. We expect this study will provide critical data that could feed into the development of an Earth-based flight test of LNA. The COBRA-Pt framework will provide a modular system by which to study any DEV concept in any atmosphere

    Pterodactyl: The Development and Performance of Guidance Algorithms for a Mechanically Deployed Entry Vehicle

    Get PDF
    Pterodactyl is a NASA Space Technology Mission Directorate (STMD) project focused on developing a design capability for optimal, scalable, Guidance and Control (G&C) solutions that enable precision targeting for Deployable Entry Vehicles (DEVs). This feasibility study is unique in that it focuses on the rapid integration of targeting performance analysis with structural & packaging analysis, which is especially challenging for new vehicle and mission designs. This paper will detail the guidance development and trajectory design process for a lunar return mission, selected to stress the vehicle designs and encourage future scalability. For the five G&C configurations considered, the Fully Numerical Predictor-Corrector Entry Guidance (FNPEG) was selected for configurations requiring bank angle guidance and FNPEG with Uncoupled Range Control (URC) was developed for configurations requiring angle of attack and sideslip angle guidance. Successful G&C configurations are defined as those that can deliver payloads to the intended descent and landing initiation point, while abiding by trajectory constraints for nominal and dispersed trajectories

    Entry, Descent, and Landing Performance for a Mid-Lift-to-Drag Ratio Vehicle at Mars

    Get PDF
    In an effort to mature the design of the Mid-Lift-to-Drag ratio Rigid Vehicle (MRV) candidate of the NASA Evolvable Mars Campaign (EMC) architecture study, end-to-end six-degree-of-freedom (6DOF) simulations are needed to ensure a successful entry, descent, and landing (EDL) design. The EMC study is assessing different vehicle and mission architectures to determine which candidate would be best to deliver a 20 metric ton payload to the surface of Mars. Due to the large mass payload and the relatively low atmospheric density of Mars, all candidates of the EMC study propose to use Supersonic Retro-Propulsion (SRP) throughout the descent and landing phase, as opposed to parachutes, in order to decelerate to a subsonic touchdown. This paper presents a 6DOF entry-to-landing performance and controllability study with sensitivities to dispersions, particularly in the powered descent and landing phases

    Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry

    Get PDF
    The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior

    Pterodactyl: Trade Study for an Integrated Control System Design of a Mechanically Deployable Entry Vehicle

    Get PDF
    This paper presents the trade study method used to evaluate and downselect from a set of guidance and control (G&C) system designs for a mechanically Deployable Entry Vehicle (DEV). The Pterodactyl project was prompted by the challenge to develop an effective G&C system for a vehicle without a backshell, which is the case for DEVs. For the DEV, the project assumed a specific aeroshell geometry pertaining to an Adaptable, Deployable Entry and Placement Technology (ADEPT) vehicle, which was successfully developed by NASAs Space Technology Mission Directorate (STMD) prior to this study. The Pterodactyl project designed three different entry G&C systems for precision targeting. This paper details the Figures of Merit (FOMs) and metrics used during the course of the projects G&C system assessment. The relative importance of the FOMs was determined from the Analytic Hierarchy Process (AHP), which was used to develop weights that were combined with quantitative design metrics and engineering judgement to rank the G&C systems against one another. This systematic method takes into consideration the projects input while simultaneously reducing unintentional judgement bias and ultimately was used to select a single G&C design for the project to pursue in the next design phase
    corecore