🚳 https://ntrs.nasa.gov/search.jsp?R=20190027310 2019-09-26T19:10:13+00:002

NASA SPACE TECHNOLOGY MISSION DIRECTORATE EARLY CAREER INITIATIVE

PTERODACTYL: AN UNCOUPLED RANGE CONTROL APPROACH TO FULLY NUMERICAL PREDICTOR-CORRECTOR ENTRY GUIDANCE

Breanna Johnson

NASA Johnson Space Center Flight Mechanics and Trajectory Design Branch EG5

Pterodactyl Project, NASA STMD

What is Pterodactyl?

A design, build, and test capability for finding optimal, scalable Guidance & Control (G&C) solutions for Deployable Entry Vehicles (DEVs) to enable precision targeting

MOTIVATION

Feasibility study such that the solution closes

- Targeting Performance (G&C)
- Packaging and Structural Analysis

Selected Lunar Return mission parameters to stress design for precision targeting and future scalability

BASELINE MODELS AND PARAMETERS

<u>Baseline vehicle</u> (Aeroshell is fixed) Lifting Nano-ADEPT (LNA) 1 m diameter Mass = 54 kg

<u>Loading Constraints</u> Heating Rate <u><</u> 250 W/cm² G-load <u><</u> 15g's

CONTROL SYSTEM TRADE STUDY

Mass Movement

Independent Moveable Masses

Reaction Control System (RCS)

MODELS AND SIMULATIONS

Model	New Development	Purpose
Aerodynamics & Aeroheating	Multi-flap modeling to generate database of forces and moments @ specific flow conditions and attitudes	Lift $\beta > 0$ V Com Side Force $V = \alpha < 0$
Guidance Algorithm	Develop methodology for identifying α/β control	Precision targeting by reducing down range and cross range errors
Control Algorithm	Identify flap deflections to track guidance commands	 - 6DOF simulation development - Define control requirements for mechanical design
Mechanical Design	Identify mechanical components to achieve flap angles, rates, and acceleration	Ensure hardware integration feasibility and stowing capability
TPS/Structures Mass Estimate	Flaps mass estimation model TPS of thickness and mass Pterodactyl Project, NASA STMD	TPS estimation key to estimation flap control system mass

NEW TARGETING APPROACH

Uncoupled Range Control (URC) - Integrated α/β control for targeting in the Fully Numerical Predictor-corrector Entry Guidance (FNPEG¹)

WHY? It is robust and adaptable to different configurations

[1]Lu, P. Entry Guidance: A Unified Method. Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 713-728.

FNPEG URC PROFILE

This is an example trajectory path for an FNPEG-URC flaps controlled LNA, beginning 3200 km away from the target

Entry Interface (EI) Parameters	Value	Units
Altitude	122	km
Latitude	-4.7	deg
Longitude	-112	deg
Relative Velocity	11	km/s
Relative Azimuth	0	deg
Relative Flight Path Angle	-5.1	deg

Guidance Target Parameters	Value	Units
Altitude Target	31	km
Latitude Target	40	deg
Longitude Target	-112	deg
Relative Velocity Target	0.69	km/s

*Comparable profiles between the two algorithms are observed, \leq 5km miss distance is desired

URC TARGETING PERFORMANCE

These guidance profiles resulted in:

- Trajectories that did not exceed the heating rate and g-load constraints
- Guidance solutions that typically become more lift up to protect for trajectory dispersions near the end of entry
- Miss distance is less than 0.5km for four of the five cases shown

Pterodactyl Project, NASA STMD

9

URC TARGETING PERFORMANCE

- Monte Carlos (MCs) were run with typical dispersions for a lunar entry mission
- All runs for example FNPEG-URC case satisfy heating (<250 W/cm²), g-load (<15 g's), and miss distance (<5 km) desired limits

	Standard Deviation
Monte Carlo Variables	σ
Initial Velocity	<u>+</u> 3.33 m/s
Initial FPA	<u>+</u> 0.03 °
Initial Azimuth	<u>+</u> 0.1°
Initial Lat	<u>+</u> 0.1°
Initial Lon	<u>+</u> 0.1°
Initial Altitude	<u>+</u> 100 m
Initial Mass	<u>+</u> 1% kg
Monte Carlo Variables	Multiplier
EARTH GRAM	N/A
CD, CL, CS	0.9-1.1

EXAMPLE PERFORMANCE FOR CANDIDATE CONTROL SYSTEMS

Dedicated aerodynamic, aerothermal, structural, and packaging analyses defined operational control regimes to reach the UTTR target [Lat = 40°, Lon = -112.1°]

- **RCS** Performance Statistics (FNPEG):
 - α_{trim} = -16.6°
 - $L/D_{trim} = 0.27$
 - $-\beta_{ball \ coef} = 54 \ \text{kg/m}^2$

1000-case MC	Mean	Max
Miss Distance	0.42 km	1.30 km
Peak Heat Rate	196 W/cm ²	211 W/cm ²
Peak G-load	5.8 g	6.5 g

 γ_{EI} =-5.2°, Range to target = 3400 km

- Mass Movement Performance Statistics (URC):
 - $[\alpha_{range}], [\beta_{range}] = [-9^{\circ}, -17^{\circ}], [\pm 10^{\circ}]$
 - L/D_{range} = [0.15, 0.29]
 - $[\beta_{ball \ coef}] = 64 \ \text{kg/m}^2$

1000-case MC	Mean	Max
Miss Distance	0.154 km	0.426 km
Peak Heat Rate	232 W/cm ²	245 W/cm ²
Peak G-load	7.7 g	8.1 g

 $[\]gamma_{EI}$ =-5.8°, Range to target = 4200 km

- Flaps Performance Statistics (URC):
 - $[\alpha_{range}], [\beta_{range}] = [-1^{\circ}, -18^{\circ}], [\pm 10^{\circ}]$

$$L/D_{range} = [0.04, 0.30]$$

$$[\beta_{ball \ coef}] = 58 \ \text{kg/m}^2$$

1000-case MC	Mean	Max
Miss Distance	0.42 km	0.87 km
Peak Heat Rate	W/cm ²	217 W/cm ²
Peak G-load	g	7.49 g

 γ_{EI} =-5.2°, Range to target = 3400 km

GUIDANCE PERFORMANCE FOR CANDIDATE CONTROL SYSTEMS

Dedicated aerodynamic, aerothermal, structural, and packaging analyses defined operational control regimes to reach the UTTR target [Lat = 40°, Lon = -112.1°]

- **Example** Performance Statistics (FNPEG):
 - α_{trim} = -16.9°
 - $L/D_{trim} = 0.27$
 - $\beta_{ball \ coef}$ = 58 kg/m²

1000-case MC	Mean	Max
Miss Distance	0.43 km	2.4 km
Peak Heat Rate	203 W/cm ²	218 W/cm ²
Peak G-load	5.7 g	6.5 g

 γ_{EI} =-5.2°, Range to target = 3400 km

- Example Performance Statistics (URC):
 - $[\alpha_{range}], [\beta_{range}] = [-9^{\circ}, -17^{\circ}], [\pm 10^{\circ}]$
 - L/D_{range} = [0.15, 0.29]
 - $[\beta_{ball \ coef}] = 64 \text{ kg/m}^2$

1000-case MC	Mean	Max
Miss Distance	0.154 km	0.426 km
Peak Heat Rate	232 W/cm ²	245 W/cm ²
Peak G-load	7.7 g	8.1 g

 γ_{EI} =-5.8°, Range to target = 4200 km

- Altered Performance Statistics (FNPEG):
 - α_{trim} = -14
 - $L/D_{trim} = 0.23$
 - $\beta_{ball \ coef}$ = 58 kg/m²

1000-case MC	Mean	Max
Miss Distance	0.44 km	1.2 km
Peak Heat Rate	198 W/cm ²	212 W/cm ²
Peak G-load	5.8 g	6.4 g

 γ_{EI} =-5.2°, Range to target = 3400 km

- Altered Performance Statistics (URC):
 - $[\alpha_{range}], [\beta_{range}] = [-9^{\circ}, -17^{\circ}], [\pm 4.5^{\circ}]$
 - L/D_{range} = [0.15, 0.29]
 - $[\beta_{ball \, coef}]$
- $= 64 \text{ kg/m}^2$

1000-case MC	Mean	Max
Miss Distance	0.76 km 🔇	3.58 km
Peak Heat Rate	243 W/cm ²	260 W/cm ²
Peak G-load	8.12 g	8.81 g

 γ_{EI} =-5.8°, Range to target = 4200 km

WHAT HAVE WE LEARNED?

- Feasible guidance solutions exist for DEVs
- FNPEG's unified algorithmic principles allow for high flexibility with little/no tuning for various regimes
- A new guidance method FNPEG-URC was successfully created to decouple downrange and crossrange control
- Regions of viable EI states are identified such that each control system may robustly reach the target precisely (<5 km)
- Success of FNPEG-URC driven designs (Mass Movement, Flaps) is strongly driven by operational angle of attack & sideslip range

QUESTIONS?

BACK UP SLIDES

URC TARGETING PERFORMANCE

- Monte Carlos (MCs) were run with typical dispersions for a lunar entry mission
- All runs for example FNPEG-URC case satisfy heating (<250 W/cm²), g-load (<15 g's), and miss distance (<5 km) desired limits

	Standard
Monte Carlo Variables	Deviation σ
Initial Velocity	<u>+</u> 3.33 m/s
Initial FPA	<u>+</u> 0.03 °
Initial Azimuth	<u>+</u> 0.1°
Initial Lat	<u>+</u> 0.1°
Initial Lon	<u>+</u> 0.1°
Initial Altitude	<u>+</u> 100 m
Initial Mass	<u>+</u> 1% kg
Monte Carlo Variables	Multiplier
EARTH GRAM iopr	N/A
CD, CL, CS	0.9-1.1

Large to Small Mass Missions are driving the development of DEVs!

Adaptable, Deployable Entry Placement Technology (ADEPT)

Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

EI STUDY : IN SEARCH OF CONVERGENCE

FNPEG URC G-LOAD CURVES

Pterodactyl Design Process Overview

Identify Potential Control Systems Tabs, RCS, etc.

Lifting Nano-ADEPT Asymmetric, 1+ meter diameter

Select Optimal Design MDAO output, SMEs

CAD Models

Aerodynamics Aerothermodynamics

Guidance & Control

Structures Analysis

TPS Sizing

Develop Vehicle and Control System Simulations Varied Fidelity

*COBRA-Pt Optimizes control system mass and target ellipse Integrate Models into MDAO Framework

Multi-disciplinary, Design, Analysis and Optimization *Garcia et al., AIAA 2010-5052 20

BASELINE MODELS AND PARAMETERS

Active Guidance

Entry Interface $h_{EI} = 122 \text{ km}$ $V_{FI} = 11.0 \text{ km/s}$ Lunar Return mission

Focused on Entry phase

Target site - Utah Test and Training Range

> Descent System Activation Ma = 2.0

FLAP CONFIGURATION OVERVIEW

α - β GUIDANCE

• Achieved precision targeting for downranges of 2000 to 2300 km, all satisfying the desired footprint (in the sky) of 5 km radius

α - β GUIDANCE

Monte Carlo Variables	Multiplier
GRAM	N/A
CD, CL, CS	0.9-1.1

	Standard
Monte Carlo Variables	Deviation σ
Initial Velocity	<u>+</u> 3.33 m/s
Initial FPA	<u>+</u> 0.03 °
Initial Azimuth	$\pm 0.1^{\circ}$
Initial Lat	<u>+</u> 0.1°
Initial Lon	<u>+</u> 0.1°
Initial Altitude	<u>+</u> 100 m
Initial Mass	± 0.4 kg

- Monte Carlos (MCs) were run for the FNPEG and FNPEG URC trajectories, with dispersions consistent with a typical lunar entry mission
- All runs for baseline satisfy heating, g-load, and miss distance constraints
- Multiple MCs were run for different ranges to converge on best input entry interface (EI)

🕺 Pterodactyl Project, NASA STMD

GUIDANCE WORK COMPLETED

- Investigated entry corridor characteristics for non-guided constant bank angle trajectories to extract notional FPA, g-load, heating, range envelope (for Con Ops & Guidance inputs)
- Delivered FNPEG trajectory with bank-only modulated profile
 - Cases included: Mars, LEO return, Lunar return
- Converted FNPEG to FNPEG URC and re-derived Equations of Motion for FNPEG to determine bank angle only vs. angle-of-attack (alpha) & sideslip angle (beta) assumptions
- Delivered 3DoF Monte Carlo results from FNPEG and FNPEG URC (single and range of MCs)
- Completed an angle rate/acceleration limit study to inform 6DoF work
- Created scripts to help auto generate inputs for the MDAO process
- Transferred FAST over to Ames' Pleiades supercomputer and worked to get compilation
- Found that alpha is a strong parameter to vary range, but may be more susceptible to aero errors than bank guidance

GUIDANCE

- Guidance: determines a moving vehicle's current position/velocity/attitude state to a desired position/velocity/attitude state, while satisfying specified constraints such as fuel expenditure, safety, dynamic/thermal loading, and time criticality
- Navigation: determines the current dynamic state (position, velocity, attitude etc.) of a vehicle provided noisy sensor measurement data in a specified frame of reference
- **Control:** determines and applies the force and torque commands needed to utilize the chosen vehicle actuators to both stabilize the vehicle and achieve the provided guidance state, usually in a closed-loop manner

DYNAMICS

- Lift defines the aerodynamic force perpendicular to the velocity vector
- **Drag** defines the aerodynamic force in the anti-velocity direction
- **Trim** defines the stability points where all aerodynamic moments about the CG are in equilibrium

HERITAGE

- First Generation Designed for low-lifting capsule vehicles in the Apollo program
 - Skip entry and final-direct entry ("Apollo entry guidance") phase
 - Flies trim alpha w/o modulation
 - Relies on sensitivity coefficients from linearized reference trajectory for predicted downrange error
 - Crossrange controlled with bank reversal logic that changes the sign when crossrange to landing exceeds a velocity-dependent deadband
- Second Generation Designed for the high L/D Space Shuttle
 - Compared to Apollo (low L/D) flight time and downrange traveled are much longer
 - Linearized gain scheduled tracking law for bank angle modulation is employed to follow the profile (similar bank reversal logic)
- Third Generation Depart from Apollo or Shuttle and rely more on predictor-corrector algorithms for real-time trajectory design and guidance solution
 - No reliance on pre-planned reference trajectory or tracking law
 - Primarily proposed for low lifting vehicles since satisfaction of the constraints is mainly through carefully chosen initial condition

Updated FNPEG to Include Side Force Contributions

- To reduce computational load, a polynomial fit + 2-step interpolation was used as an approximate to the true CD, CL, and CS coefficients
 - CD and CL required a second-order polynomial fit for each Mach
 - CS required linear polynomial fit
 - Trends were difficult to quantify between alpha and beta leading to a two step interpolation method
- Coefficients were used to define equations useful for automatic lateral logic gain updates based on dynamic pressure (\bar{q})

Introduction to FNPEG

• Features

- FNPEG is a fully numerical predictor-corrector entry guidance algorithm capable of direct entry guidance and skip entry guidance
- At each guidance time step, FNPEG uses Newton-Raphson method within its' predictor-corrector to search for the bank angle command σ_0 that creates a bank angle vs. energy linear profile, resulting in minimal miss distance, where energy is defined as: $e = \frac{\mu}{r} \frac{V^2}{2}$
- Inequality path constraint enforcement capability
 - g-Load, heating rate, dynamic pressure,...
 - Constraint enforcement does not interfere with guidance precision
- Deterministic lateral algorithm that allows the user to specify a desired number of bank (σ) reversals
- Applicability to different vehicles with a wide range of L/D ratios, mission types, and initial conditions, without the need for redesign, tuning, or extensive adjustments to the algorithm
- A variation is available for optimal aerocapture guidance (FNPAG)
- Status
 - FNPEG tested and evaluated at JSC in Orion simulation environment; Compared favorably with Orion entry guidance algorithm PredGuid
 - FNPAG was in an aerocapture fly-off at Langley in 2016, and extensively used at JSC in aerocapture parametric studies
 - Reference: Lu, Brunner, Stachowiak, Mendeck, Tigges, Cerimele, "Verification of a Fully Numerical Predictor-Corrector Entry Guidance Algorithm", Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017

Fully Numerical Predictor-Corrector Entry Guidance

*from Dr. Ping Lu

- Unlike other guidance algorithms, FNPEG is a *unified* method based on the same algorithmic principles applicable to a wide range of vehicles (low to high L/D)
- It can also be applied to skip as well as direct entry for orbital and sub-orbital entry missions
- FNPEG has good convergence rates and can enforce complicated (quadratic) inequality heating and aerodynamic load constraints

$$\dot{Q} = k_Q \sqrt{\rho} V^{3.15} \le \dot{Q}_{max}$$

$$a = \sqrt{L^2 + D^2} \le a_{max}$$

$$\bar{q} = (g_0 R_0 \rho V^2)/2 \le \bar{q}_{max}$$

Re-derived compared to accepted text from N. Vinh), but should eventually include the side force contribution into the 3 dynamic equations of motion $(\dot{\gamma}, \dot{\psi}, \dot{V})$, which was not included in Vinh and Lu's derivations. They usually aren't important to include for bank guidance where β & CS are assumed small.

$$\underline{\mathcal{F}}_{\to}^{T}(\mathbf{D}_{w} + \mathbf{L}_{w}) = \underline{\mathcal{F}}_{\to}^{T} \left(\begin{bmatrix} -D\\0\\0 \end{bmatrix} + \begin{bmatrix} 0\\0\\-L \end{bmatrix} + \begin{bmatrix} 0\\S\\0 \end{bmatrix} \right)$$
(53)

$$\underline{\mathcal{F}}_{f}^{T}(\mathbf{A}_{f} + \mathbf{T}_{f}) = \underline{\mathcal{F}}_{f}^{T}(\mathbf{D}_{f} + \mathbf{R}_{fw}\mathbf{L}_{w} + \mathbf{R}_{fw}\mathbf{S}_{w} + \mathbf{R}_{fb}\mathbf{T}_{b})$$
(55)

$$\underline{\mathcal{F}}_{f}^{T}(\mathbf{A}_{f} + \mathbf{T}_{f}) = \underline{\mathcal{F}}_{f}^{T} \left(\begin{bmatrix} -D\\0\\0 \end{bmatrix} + \begin{bmatrix} 0\\Ls(\sigma)\\-Lc(\sigma) \end{bmatrix} + \begin{bmatrix} 0\\Sc(\sigma)\\Ss(\sigma) \end{bmatrix} + \begin{bmatrix} Tc(\alpha + \epsilon)c(\beta) \\ Ts(\alpha + \epsilon)s(\sigma) - Tc(\alpha + \epsilon)s(\beta)c(\sigma)\\ -Ts(\alpha + \epsilon)c(\sigma) - Tc(\alpha + \epsilon)s(\beta)s(\sigma) \end{bmatrix} \right)$$
(56)
$$\mathcal{T} = Tc(\alpha + \epsilon)c(\beta) - D$$
$$\mathcal{S} = Tc(\alpha + \epsilon)s(\beta) - S$$
$$\mathcal{H} = Ts(\alpha + \epsilon) + L$$

Using Eqns 13 and 56 yield

$$\dot{\mathcal{V}} = \frac{1}{m}\mathcal{T} - gs(\gamma) + \omega^2 rc(\phi)(s(\gamma)c(\phi) - c(\gamma)s(\phi)s(\psi)$$

$$(43)$$

$$\frac{1}{m}\mathcal{L}(s(\sigma)) = \frac{\mathcal{V}^2}{m} (s(\gamma) + \frac{\mathcal{V}^2}{m} (s(\gamma)c(\phi) + \frac{2m}{m} (s(\gamma)c(\phi)s(\phi) + \frac{2m}{m} (s(\gamma)c(\phi)s(\phi)s(\phi))$$

$$(44)$$

$$\mathcal{V}\dot{\psi} = \frac{1}{m}\frac{\mathcal{N}s(\sigma)}{c(\gamma)} + \frac{1}{m}\frac{\mathcal{S}c(\sigma)}{c(\gamma)} - \frac{\mathcal{V}}{r}c(\gamma)c(\psi)t(\phi) + 2\omega\mathcal{V}(t(\gamma)c(\psi)s(\psi) - s(\phi)) - \frac{\omega^{-}r}{c(\gamma)}s(\phi)c(\phi)c(\psi)$$
(45)