35 research outputs found

    Longitudinal stability of genetic and environmental influences on the association between diurnal preference and sleep quality in young adult twins and siblings

    Get PDF
    Overlapping genetic influences have been implicated in diurnal preference and subjective sleep quality. Our overall aim was to examine overlapping concurrent and longitudinal genetic and environmental effects on diurnal preference and sleep quality over ~5 years. Behavioural genetic analyses were performed on data from the longitudinal British G1219 study of young adult twins and non-twin siblings. 1556 twins and siblings provided data on diurnal preference (Morningness-Eveningness Questionnaire) and sleep quality (Pittsburgh Sleep Quality Index) at time 1 (mean age=20.30 years, SD=1.76; 62% female); and 862 participated at time 2 (mean age=25.30 years, SD=1.81; 66% female). Preference for eveningness was associated with poorer sleep quality at both time-points (r=.25[95% confidence intervals, (CI)=.20-.30], and r=.21[CI=.15-.28]). There was substantial overlap in the genetic influences on diurnal preference and sleep quality individually, across time (genetic correlations [rA’s]: .64[95% CI = .59-.67] and .48[95% CI = .42-.53]). There were moderate genetic correlations between diurnal preference and sleep quality concurrently and longitudinally (rAs=.29-.60). Non-shared environmental overlap was substantially smaller for all cross-phenotype associations (non-shared environmental correlations [rE’s]=-.02-.08). All concurrent and longitudinal associations within and between phenotypes were largely accounted for by genetic factors (explaining between 60%-100% of the associations). All shared environmental effects were non-significant. Non-shared environmental influences played a smaller role on the associations between phenotypes (explaining between -.06%-40% of the associations). These results suggest that to some extent similar genes contribute to the stability of diurnal preference and sleep quality throughout young adulthood, but also that different genes play a part over this relatively short time-frame. While there was evidence of genetic overlap between phenotypes concurrently and longitudinally, the possible emergence of new genetic factors (or decline of previously associated factors) suggests that molecular genetic studies focussing on young adults should consider more tightly specified age-groups, given that genetic effects may be time-specific

    A pilot study of eye movement during mammography interpretation: Eyetracker results and workstation design implications

    Get PDF
    Digital mammography can potentially improve mammography image and interpretation quality. On-line interpretation from a workstation may improve interpretation logistics and increase availability of comparison images. Interpretation of eight 4k- x 5k-pixel mammograms on two to four 2k- x 2.5k-pixel monitors is problematic because of the time spent in choosing which images display on which monitors, and zooming and roaming on individual images that are too large to display completely at full resolution. The authors used an eyetracker to measure radiologists viewing behavior during mammography interpretation with film on a viewbox. It was observed that a significant portion of the mammographers' time is spent viewing "comparison pairs" (typically two or more comparisons per case), such as the left mediolateral and craniocaudal images or old and new images. From the eyetracker measurements, we estimated that the number of image display, roam, and zoom operations decreases from an average of 64 for one monitor to 31 for four monitors, with the largest change going from one to two monitors. We also show that fewer monitors with a faster response time is superior to more monitors with a slower response time. Finally, the authors demonstrate the applicability of time-motion analysis to mammographic workstation design

    Copy Number Variation of KIR Genes Influences HIV-1 Control

    Get PDF
    The authors that the number of activating and inhibitory KIR genes varies between individuals and plays a role in the regulation of immune mechanisms that determine HIV-1 control

    LILRB2 Interaction with HLA Class I Correlates with Control of HIV-1 Infection.

    Get PDF
    Natural progression of HIV-1 infection depends on genetic variation in the human major histocompatibility complex (MHC) class I locus, and the CD8+ T cell response is thought to be a primary mechanism of this effect. However, polymorphism within the MHC may also alter innate immune activity against human immunodeficiency virus type 1 (HIV-1) by changing interactions of human leukocyte antigen (HLA) class I molecules with leukocyte immunoglobulin-like receptors (LILR), a group of immunoregulatory receptors mainly expressed on myelomonocytic cells including dendritic cells (DCs). We used previously characterized HLA allotype-specific binding capacities of LILRB1 and LILRB2 as well as data from a large cohort of HIV-1-infected individuals (N = 5126) to test whether LILR-HLA class I interactions influence viral load in HIV-1 infection. Our analyses in persons of European descent, the largest ethnic group examined, show that the effect of HLA-B alleles on HIV-1 control correlates with the binding strength between corresponding HLA-B allotypes and LILRB2 (p = 10-2). Moreover, overall binding strength of LILRB2 to classical HLA class I allotypes, defined by the HLA-A/B/C genotypes in each patient, positively associates with viral replication in the absence of therapy in patients of both European (p = 10-11-10-9) and African (p = 10-5-10-3) descent. This effect appears to be driven by variations in LILRB2 binding affinities to HLA-B and is independent of individual class I allelic effects that are not related to the LILRB2 function. Correspondingly, in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of DCs. Thus, we propose an impact of LILRB2 on HIV-1 disease outcomes through altered regulation of DCs by LILRB2-HLA engagement

    2- C

    No full text

    2,5-Di- O

    No full text
    corecore