76 research outputs found

    In the quest of vision-sensors-on-chip: Pre-processing sensors for data reduction

    Get PDF
    This paper shows that the implementation of vision systems benefits from the usage of sensing front-end chips with embedded pre-processing capabilities - called CVIS. Such embedded pre-processors reduce the number of data to be delivered for ulterior processing. This strategy, which is also adopted by natural vision systems, relaxes system-level requirements regarding data storage and communications and enables highly compact and fast vision systems. The paper includes several proof-o-concept CVIS chips with embedded pre-processing and illustrate their potential advantages. © 2017, Society for Imaging Science and Technology.Office of Naval Research (USA) N00014-14-1-0355Ministerio de Economía y Competitiviad TEC2015-66878-C3-1-R, TEC2015-66878-C3-3-RJunta de Andalucía 2012 TIC 233

    CMOS-3D smart imager architectures for feature detection

    Get PDF
    This paper reports a multi-layered smart image sensor architecture for feature extraction based on detection of interest points. The architecture is conceived for 3-D integrated circuit technologies consisting of two layers (tiers) plus memory. The top tier includes sensing and processing circuitry aimed to perform Gaussian filtering and generate Gaussian pyramids in fully concurrent way. The circuitry in this tier operates in mixed-signal domain. It embeds in-pixel correlated double sampling, a switched-capacitor network for Gaussian pyramid generation, analog memories and a comparator for in-pixel analog-to-digital conversion. This tier can be further split into two for improved resolution; one containing the sensors and another containing a capacitor per sensor plus the mixed-signal processing circuitry. Regarding the bottom tier, it embeds digital circuitry entitled for the calculation of Harris, Hessian, and difference-of-Gaussian detectors. The overall system can hence be configured by the user to detect interest points by using the algorithm out of these three better suited to practical applications. The paper describes the different kind of algorithms featured and the circuitry employed at top and bottom tiers. The Gaussian pyramid is implemented with a switched-capacitor network in less than 50 μs, outperforming more conventional solutions.Xunta de Galicia 10PXIB206037PRMinisterio de Ciencia e Innovación TEC2009-12686, IPT-2011-1625-430000Office of Naval Research N00014111031

    Offset-compensated comparator with full-input range in 150nm FDSOI CMOS-3d technology

    Get PDF
    This paper addresses an offset-compensated comparator with full-input range in the 150nm FDSOI CMOS- 3D technology from MIT- Lincoln Laboratory. The comparator discussed here makes part of a vision system. Its architecture is that of a self-biased inverter with dynamic offset correction. At simulation level, the comparator can reach a resolution of 0.1mV in an area of approximately 220μm2 with a time response of less than 40ns and a static power dissipation of 1.125μW

    Histogram-based method for contrast measurement

    Get PDF
    A histogram-based technique for robust contrast measurement is proposed. The method is based on fitting the histogram of the measured image to the histogram of a model function, and it can be used for contrast determination in fringe patterns. Simulated and experimental results are presented

    Form Factor Improvement of Smart-Pixels for Vision Sensors through 3-D Vertically- Integrated Technologies

    Get PDF
    While conventional CMOS active pixel sensors embed only the circuitry required for photo-detection, pixel addressing and voltage buffering, smart pixels incorporate also circuitry for data processing, data storage and control of data interchange. This additional circuitry enables data processing be realized concurrently with the acquisition of images which is instrumental to reduce the number of data needed to carry to information contained into images. This way, more efficient vision systems can be built at the cost of larger pixel pitch. Vertically-integrated 3D technologies enable to keep the advnatges of smart pixels while improving the form factor of smart pixels.Office of Naval Research N000141110312Ministerio de Ciencia e Innovación IPT-2011-1625-43000

    In-pixel generation of gaussian pyramid images by block reusing in 3D-CMOS

    Get PDF
    This paper introduces an architecture of a switched-capacitor network for Gaussian pyramid generation. Gaussian pyramids are used in modern scale- and rotation-invariant feature detectors or in visual attention. Our switched-capacitor architecture is conceived within the framework of a CMOS-3D-based vision system. As such, it is also used during the acquisition phase to perform analog storage and Correlated Double Sampling (CDS). The paper addresses mismatch, and switching errors like feedthrough and charge injection. The paper also gives an estimate of the area occupied by each pixel on the 130nm CMOS-3D technology by Tezzaron. The validity of our proposal is assessed through object detection in a scale- and rotation-invariant feature detector.Xunta de Galicia 10PXIB206037PRMinisterio de Ciencia e Innovación TEC2009-12686Office of Naval Research (USA) N00014111031

    Switched-capacitor networks for scale-space generation

    Get PDF
    In scale-space filtering signals are represented at several scales, each conveying different details of the original signal. Every new scale is the result of a smoothing operator on a former scale. In image processing, scale-space filtering is widely used in feature extractors as the Scale-Invariant Feature Transform (SIFT) algorithm. RC networks are posed as valid scale-space generators in focal-plane processing. Switched-capacitor networks are another alternative, as different topologies and switching rate offer a great flexibility. This work examines the parallel and the bilinear implementations as two different switched-capacitor network topologies for scale-space filtering. The paper assesses the validity of both topologies as scale-space generators in focal-plane processing through object detection with the SIFT algorithm.Xunta de Galicia 10PXI206037PRMinisterio de Ciencia e Innovación TEC2009- 12686, TEC2009-11812Office of Naval Research (USA) N00014111031

    Gaussian Pyramid Extraction with a CMOS Vision Sensor

    Get PDF
    Comunicación presentada en 2014 14th International Workshop on Cellular Nanoscale Networks and Their Applications, CNNA 2014; University of Notre Dame; United States; 29 July 2014 through 31 July 2014This paper addresses a CMOS vision sensor with 176 × 120 pixels in standard 0.18 μm CMOS technology that computes the Gaussian pyramid. The Gaussian pyramid is extracted with a double-Euler switched-capacitor network, giving RMSE errors below 1.2% of full-scale value. The chip provides a Gaussian pyramid of 3 octaves with 6 scales each with an energy cost of 26.5 nJ at 2.64 Mpx/s.Gobierno de España ONR N000141410355 TEC2009-12686 MICINNMINECO TEC2012- 38921-C02 (FEDER)MINECO IPT-2011-1625-430000 IPC-20111009Junta de Andalucía TIC 2338-2013Xunta de Galicia EM2013 / 038 (FEDER)FEDER CN2012/151 GPC2013 / 04

    Offset-compensated comparator with full-input range in 150nm FDSOI CMOS-3d technology

    Get PDF
    Trabajo presentado al LASCAS celebrado en Iguazu (Brasil) del 24 al 26 de febrero de 2010.This paper addresses an offset-compensated comparator with full-input range in the 150nm FDSOI CMOS-3D technology from MIT- Lincoln Laboratory. The comparator discussed here makes part of a vision system. Its architecture is that of a self-biased inverter with dynamic offset correction. At simulation level, the comparator can reach a resolution of 0.1mV in an area of approximately 220μm2 with a time response of less than 40ns and a static power dissipation of 1.125μW.Peer Reviewe

    Low-Power CMOS Vision Sensor for Gaussian Pyramid Extraction

    Get PDF
    This paper introduces a CMOS vision sensor chip in a standard 0.18 μm CMOS technology for Gaussian pyramid extraction. The Gaussian pyramid provides computer vision algorithms with scale invariance, which permits having the same response regardless of the distance of the scene to the camera. The chip comprises 176×120 photosensors arranged into 88×60 processing elements (PEs). The Gaussian pyramid is generated with a double-Euler switched capacitor (SC) network. Every PE comprises four photodiodes, one 8 b single-slope analog-to-digital converter, one correlated double sampling circuit, and four state capacitors with their corresponding switches to implement the double-Euler SC network. Every PE occupies 44×44 μm2 . Measurements from the chip are presented to assess the accuracy of the generated Gaussian pyramid for visual tracking applications. Error levels are below 2% full-scale output, thus making the chip feasible for these applications. Also, energy cost is 26.5 nJ/px at 2.64 Mpx/s, thus outperforming conventional solutions of imager plus microprocessor unit.Office of Naval Research, USA N00014-14-1-0355Ministerio de Economía y Competitividad TEC2015-66878- C3-1-R, TEC2015-66878-C3-3-RJunta de Andalucía TIC 2338, EM2013/038, EM2014/01
    corecore