90 research outputs found

    Prediction of gene expression in embryonic structures of Drosophila melanogaster.

    Get PDF
    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms

    The IronChip evaluation package: a package of perl modules for robust analysis of custom microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available.</p> <p>Results</p> <p>The IronChip Evaluation Package (ICEP) is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls.</p> <p>Conclusions</p> <p>ICEP is a stand-alone Windows application to obtain optimal data quality from custom-designed microarrays and is freely available here (see "Additional Files" section) and at: <url>http://www.alice-dsl.net/evgeniy.vainshtein/ICEP/</url></p

    A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB

    Get PDF
    BACKGROUND: Sharing of microarray data within the research community has been greatly facilitated by the development of the disclosure and communication standards MIAME and MAGE-ML by the MGED Society. However, the complexity of the MAGE-ML format has made its use impractical for laboratories lacking dedicated bioinformatics support. RESULTS: We propose a simple tab-delimited, spreadsheet-based format, MAGE-TAB, which will become a part of the MAGE microarray data standard and can be used for annotating and communicating microarray data in a MIAME compliant fashion. CONCLUSION: MAGE-TAB will enable laboratories without bioinformatics experience or support to manage, exchange and submit well-annotated microarray data in a standard format using a spreadsheet. The MAGE-TAB format is self-contained, and does not require an understanding of MAGE-ML or XML

    A call for public archives for biological image data

    Get PDF
    Public data archives are the backbone of modern biological and biomedical research. While archives for biological molecules and structures are well-established, resources for imaging data do not yet cover the full range of spatial and temporal scales or application domains used by the scientific community. In the last few years, the technical barriers to building such resources have been solved and the first examples of scientific outputs from public image data resources, often through linkage to existing molecular resources, have been published. Using the successes of existing biomolecular resources as a guide, we present the rationale and principles for the construction of image data archives and databases that will be the foundation of the next revolution in biological and biomedical informatics and discovery.Comment: 13 pages, 1 figur
    • …
    corecore