239 research outputs found

    Neutronic Evaluation of Using a Thorium Sulfate Solution in an Aqueous Homogeneous Reactor

    Get PDF
    Radioisotope 99Mo is one of the most essential radioisotopes in nuclear medicine. Its production in an Aqueous Homogeneous Reactor (AHR) could be potentially advantageous compared to the traditional technology, based on target irradiation in a heterogeneous reactor. An AHR conceptual design using low-enriched uranium for the production of 99Mo has been studied in depth. So far, the possibility of replacing uranium with a non-uranium fuel, specifically a mixture of 232Th and 233U, has not been evaluated in the conceptual design. Therefore, the studies conducted in this article aim to evaluate the neutronic behavior of the AHR conceptual design using thorium sulfate solution. Here, the 232Th-233U composition to guarantee ten years of operation without refueling, conversion ratio, medical isotopes production levels, and reactor kinetic parameters were evaluated, using the computational code MCNP6. It was obtained that 14 % 233U enrichment guarantees the reactor operation for ten years without refueling. The conversion ratio was calculated at 0.14. The calculated 99Mo production in the AHR conceptual design resulted in 24.4 % higher with uranium fuel than with thorium fuel

    Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Get PDF
    Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U) in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR) and two Pebble-Bed Accelerator Driven Systems (ADSs) was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.Received: 09 February 2015; Revised: 12 May 2015; Accepted: 20 May 201

    THE SUSCEPTIBILITY OF RECENT ISOLATES OF Schistosoma mansoni TO PRAZIQUANTEL

    Get PDF
    Introduction: Schistosomiasis is a chronic disease caused by trematode flatworms of the genus Schistosoma and its control is dependent on a single drug, praziquantel (PZQ), but concerns over PZQ resistance have renewed interest in evaluating the in vitro susceptibility of recent isolates of Schistosoma mansoni to PZQ in comparison with well-established strains in the laboratory. Material and methods: The in vitro activity of PZQ (6.5-0.003 µg/mL) was evaluated in terms of mortality, reduced motor activity and ultrastructural alterations against S. mansoni. Results: After 3 h of incubation, PZQ, at 6.5 µg/mL, caused 100% mortality of all adult worms in the three types of recent isolates, while PZQ was inactive at concentrations of 0.08-0.003 µg/mL after 3 h of incubation. The results show that the SLM and Sotave isolates basically presented the same pattern of susceptibility, differing only in the concentration of 6.5 µg/mL, where deaths occurred from the range of 1.5 h in Sotave and just in the 3 h range of SLM. Additionally, this article presents ultrastructural evidence of rapid severe PZQ-induced surface membrane damage in S. mansoni after treatment with the drug, such as disintegration, sloughing, and erosion of the surface. Conclusion: According to these results, PZQ is very effective to induce tegument destruction of recent isolates of S. mansoni

    Electrostatic-Assembly-Driven Formation of Supramolecular Rhombus Microparticles and Their Application for Fluorescent Nucleic Acid Detection

    Get PDF
    In this paper, we report on the large-scale formation of supramolecular rhombus microparticles (SRMs) driven by electrostatic assembly, carried out by direct mixing of an aqueous HAuCl4 solution and an ethanol solution of 4,4′-bipyridine at room temperature. We further demonstrate their use as an effective fluorescent sensing platform for nucleic acid detection with a high selectivity down to single-base mismatch. The general concept used in this approach is based on adsorption of the fluorescently labeled single-stranded DNA (ssDNA) probe by SRM, which is accompanied by substantial fluorescence quenching. In the following assay, specific hybridization with its target to form double-stranded DNA (dsDNA) results in desorption of ssDNA from SRM surface and subsequent fluorescence recovery

    Poly(m-Phenylenediamine) Nanospheres and Nanorods: Selective Synthesis and Their Application for Multiplex Nucleic Acid Detection

    Get PDF
    In this paper, we demonstrate for the first time that poly(m-phenylenediamine) (PMPD) nanospheres and nanorods can be selectively synthesized via chemical oxidation polymerization of m-phenylenediamine (MPD) monomers using ammonium persulfate (APS) as an oxidant at room temperature. It suggests that the pH value plays a critical role in controlling the the morphology of the nanostructures and fast polymerization rate favors the anisotropic growth of PMPD under homogeneous nucleation condition. We further demonstrate that such PMPD nanostructures can be used as an effective fluorescent sensing platform for multiplex nucleic acid detection. A detection limit as low as 50 pM and a high selectivity down to single-base mismatch could be achieved. The fluorescence quenching is attributed to photoinduced electron transfer from nitrogen atom in PMPD to excited fluorophore. Most importantly, the successful use of this sensing platform in human blood serum system is also demonstrated
    corecore