334 research outputs found
Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State
We propose a dark-matter (DM) admixed density-dependent equation of state
where the fermionic DM interacts with the nucleons via Higgs portal. Presence
of DM can hardly influence the particle distribution inside neutron star (NS)
but can significantly affect the structure as well as equation of state (EOS)
of NS. Introduction of DM inside NS softens the equation of state. We explored
the effect of variation of DM mass and DM Fermi momentum on the NS EOS.
Moreover, DM-Higgs coupling is constrained using dark matter direct detection
experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and
DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi
momentum. We have done our analysis by considering different NS masses. Also DM
mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling.
We calculated the variations of luminosity and temperature of NS with time for
all EOSs considered in our work and then compared our calculations with the
observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E
1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR
B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS
agrees well with the pulsar data for lighter and medium mass NSs but cooling is
very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all
considered NS masses, all chosen DM masses and Fermi momenta agree well with
the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR
B2334+61. Cooling becomes faster as compared to normal NSs in case of
increasing DM mass and Fermi momenta. It is infered from the calculations that
if low mass super cold NSs are observed in future that may support the fact
that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European
Physical Journal
Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
We present an improved event-level likelihood formalism for including
neutrino telescope data in global fits to new physics. We derive limits on
spin-dependent dark matter-proton scattering by employing the new formalism in
a re-analysis of data from the 79-string IceCube search for dark matter
annihilation in the Sun, including explicit energy information for each event.
The new analysis excludes a number of models in the weak-scale minimal
supersymmetric standard model (MSSM) for the first time. This work is
accompanied by the public release of the 79-string IceCube data, as well as an
associated computer code for applying the new likelihood to arbitrary dark
matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias
Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small
updates to address JCAP referee repor
An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory
We present the results and methodology of a search for neutrinos produced in
the decay of charged pions created in interactions between protons and
gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the
entire sky. This three-year search is the first in IceCube for shower-like
Cherenkov light patterns from electron, muon, and tau neutrinos correlated with
GRBs. We detect five low-significance events correlated with five GRBs. These
events are consistent with the background expectation from atmospheric muons
and neutrinos. The results of this search in combination with those of
IceCube's four years of searches for track-like Cherenkov light patterns from
muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that
tightly constrain current models of neutrino and ultra high energy cosmic ray
production in GRB fireballs.Comment: 33 pages, 14 figures; minor changes made to match published version
in the Astrophysical Journal, 2016 June 2
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors
Papers on atmospheric and astrophysical diffuse neutrino searches of all
flavors submitted to the 34th International Cosmic Ray Conference (ICRC 2015,
The Hague) by the IceCube Collaboration.Comment: 66 pages, 36 figures, Papers submitted to the 34th International
Cosmic Ray Conference, The Hague 2015, v2 has a corrected author lis
All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data
Since the recent detection of an astrophysical flux of high energy neutrinos,
the question of its origin has not yet fully been answered. Much of what is
known about this flux comes from a small event sample of high neutrino purity,
good energy resolution, but large angular uncertainties. In searches for
point-like sources, on the other hand, the best performance is given by using
large statistics and good angular reconstructions. Track-like muon events
produced in neutrino interactions satisfy these requirements. We present here
the results of searches for point-like sources with neutrinos using data
acquired by the IceCube detector over seven years from 2008--2015. The
discovery potential of the analysis in the northern sky is now significantly
below , on average
lower than the sensitivity of the previously published analysis of four
years exposure. No significant clustering of neutrinos above background
expectation was observed, and implications for prominent neutrino source
candidates are discussed.Comment: 19 pages, 17 figures, 3 tables; ; submitted to The Astrophysical
Journa
Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data
The IceCube Collaboration has previously discovered a high-energy
astrophysical neutrino flux using neutrino events with interaction vertices
contained within the instrumented volume of the IceCube detector. We present a
complementary measurement using charged current muon neutrino events where the
interaction vertex can be outside this volume. As a consequence of the large
muon range the effective area is significantly larger but the field of view is
restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have
been analyzed using a likelihood approach based on the reconstructed muon
energy and zenith angle. At the highest neutrino energies between 191 TeV and
8.3 PeV a significant astrophysical contribution is observed, excluding a
purely atmospheric origin of these events at significance. The
data are well described by an isotropic, unbroken power law flux with a
normalization at 100 TeV neutrino energy of
and a hard spectral index of . The observed spectrum is
harder in comparison to previous IceCube analyses with lower energy thresholds
which may indicate a break in the astrophysical neutrino spectrum of unknown
origin. The highest energy event observed has a reconstructed muon energy of
which implies a probability of less than 0.005% for
this event to be of atmospheric origin. Analyzing the arrival directions of all
events with reconstructed muon energies above 200 TeV no correlation with known
-ray sources was found. Using the high statistics of atmospheric
neutrinos we report the currently best constraints on a prompt atmospheric muon
neutrino flux originating from charmed meson decays which is below in
units of the flux normalization of the model in Enberg et al. (2008).Comment: 20 pages, 21 figure
Lowering IceCube’s energy threshold for point source searches in the southern sky
Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current nu(mu) interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (similar to 100 TeV) starting event in the sample found that this event alone represents a 2.8 sigma deviation from the hypothesis that the data consists only of atmospheric background
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part III: Cosmic Rays
Papers on cosmic rays submitted to the 34th International Cosmic Ray
Conference (ICRC 2015, The Hague) by the IceCube Collaboration.Comment: 83 pages, 52 figues, Papers submitted to the 34th International
Cosmic Ray Conference, The Hague 2015, v2 has a corrected author lis
- …