183 research outputs found

    Para-Sasakian geometry in thermodynamic fluctuation theory

    Full text link
    In this work we tie concepts derived from statistical mechanics, information theory and contact Riemannian geometry within a single consistent formalism for thermodynamic fluctuation theory. We derive the concrete relations characterizing the geometry of the Thermodynamic Phase Space stemming from the relative entropy and the Fisher-Rao information matrix. In particular, we show that the Thermodynamic Phase Space is endowed with a natural para-contact pseudo-Riemannian structure derived from a statistical moment expansion which is para-Sasaki and {\eta}-Einstein. Moreover, we prove that such manifold is locally isomorphic to the hyperbolic Heisenberg group. In this way we show that the hyperbolic geometry and the Heisenberg commutation relations on the phase space naturally emerge from classical statistical mechanics. Finally, we argue on the possible implications of our results.Comment: Significant improvements and corrections from the previous version. Additional material adde

    Contract-Driven Implementation of Choreographies

    Get PDF
    Choreographies and Contracts are important concepts in Service Oriented Computing. Choreographies are the description of the behaviour of a service system from a global point of view, while contracts are the description of the externally observable message-passing behaviour of a given service. Exploiting some of our previous results about choreography projection and contract refinement, we show how to solve the problem of implementing a choreography via the composition of already available services that are retrieved according to their contracts

    Contact Symmetries and Hamiltonian Thermodynamics

    Full text link
    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher's Information Matrix. In this work we analyze several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.Comment: 33 pages, 2 figures, substantial improvement of http://arxiv.org/abs/1308.674

    Conformal Gauge Transformations in Thermodynamics

    Full text link
    In this work we consider conformal gauge transformations of the geometric structure of thermodynamic fluctuation theory. In particular, we show that the Thermodynamic Phase Space is naturally endowed with a non-integrable connection, defined by all those processes that annihilate the Gibbs 1-form, i.e. reversible processes. Therefore the geometry of reversible processes is invariant under re-scalings, that is, it has a conformal gauge freedom. Interestingly, as a consequence of the non-integrability of the connection, its curvature is not invariant under conformal gauge transformations and, therefore, neither is the associated pseudo-Riemannian geometry. We argue that this is not surprising, since these two objects are associated with irreversible processes. Moreover, we provide the explicit form in which all the elements of the geometric structure of the Thermodynamic Phase Space change under a conformal gauge transformation. As an example, we revisit the change of the thermodynamic representation and consider the resulting change between the two metrics on the Thermodynamic Phase Space which induce Weinhold's energy metric and Ruppeiner's entropy metric. As a by-product we obtain a proof of the well-known conformal relation between Weinhold's and Ruppeiner's metrics along the equilibrium directions. Finally, we find interesting properties of the almost para-contact structure and of its eigenvectors which may be of physical interest

    On Global Types and Multi-Party Session

    Get PDF
    Global types are formal specifications that describe communication protocols in terms of their global interactions. We present a new, streamlined language of global types equipped with a trace-based semantics and whose features and restrictions are semantically justified. The multi-party sessions obtained projecting our global types enjoy a liveness property in addition to the traditional progress and are shown to be sound and complete with respect to the set of traces of the originating global type. Our notion of completeness is less demanding than the classical ones, allowing a multi-party session to leave out redundant traces from an underspecified global type. In addition to the technical content, we discuss some limitations of our language of global types and provide an extensive comparison with related specification languages adopted in different communities

    Rate-Based Transition Systems for Stochastic Process Calculi

    Get PDF
    A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition

    A Hierarchy of Scheduler Classes for Stochastic Automata

    Get PDF
    Stochastic automata are a formal compositional model for concurrent stochastic timed systems, with general distributions and non-deterministic choices. Measures of interest are defined over schedulers that resolve the nondeterminism. In this paper we investigate the power of various theoretically and practically motivated classes of schedulers, considering the classic complete-information view and a restriction to non-prophetic schedulers. We prove a hierarchy of scheduler classes w.r.t. unbounded probabilistic reachability. We find that, unlike Markovian formalisms, stochastic automata distinguish most classes even in this basic setting. Verification and strategy synthesis methods thus face a tradeoff between powerful and efficient classes. Using lightweight scheduler sampling, we explore this tradeoff and demonstrate the concept of a useful approximative verification technique for stochastic automata
    corecore