99 research outputs found

    Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus

    Get PDF
    Markert B, Stolzenberger J, Brautaset T, Wendisch VF. Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiology. 2014;14(1): 7.Background Transketolase (TKT) is a key enzyme of the pentose phosphate pathway (PPP), the Calvin cycle and the ribulose monophosphate (RuMP) cycle. Bacillus methanolicus is a facultative RuMP pathway methylotroph. B. methanolicus MGA3 harbors two genes putatively coding for TKTs; one located on the chromosome (tktC) and one located on the natural occurring plasmid pBM19 (tktP). Results Both enzymes were produced in recombinant Escherichia coli, purified and shown to share similar biochemical parameters in vitro. They were found to be active as homotetramers and require thiamine pyrophosphate for catalytic activity. The inactive apoform of the TKTs, yielded by dialysis against buffer containing 10 mM EDTA, could be reconstituted most efficiently with Mn2+ and Mg2+. Both TKTs were thermo stable at physiological temperature (up to 65°C) with the highest activity at neutral pH. Ni2+, ATP and ADP significantly inhibited activity of both TKTs. Unlike the recently characterized RuMP pathway enzymes fructose 1,6-bisphosphate aldolase (FBA) and fructose 1,6-bisphosphatase/sedoheptulose 1,7-bisphosphatase (FBPase/SBPase) from B. methanolicus MGA3, both TKTs exhibited similar kinetic parameters although they only share 76% identical amino acids. The kinetic parameters were determined for the reaction with the substrates xylulose 5-phosphate (TKTC: kcat/KM: 264 s-1 mM-1; TKTP: kcat/KM: 231 s-1 mM) and ribulose 5-phosphate (TKTC: kcat/KM: 109 s-1 mM; TKTP: kcat/KM: 84 s-1 mM) as well as for the reaction with the substrates glyceraldehyde 3-phosphate (TKTC: kcat/KM: 108 s-1 mM; TKTP: kcat/KM: 71 s-1 mM) and fructose 6-phosphate (TKTC kcat/KM: 115 s-1 mM; TKTP: kcat/KM: 448 s-1 mM). Conclusions Based on the kinetic parameters no major TKT of B. methanolicus could be determined. Increased expression of tktP, but not of tktC during growth with methanol [J Bacteriol 188:3063–3072, 2006] argues for TKTP being the major TKT relevant in the RuMP pathway. Neither TKT exhibited activity as dihydroxyacetone synthase, as found in methylotrophic yeast, or as the evolutionary related 1-deoxyxylulose-5-phosphate synthase. The biological significance of the two TKTs for B. methanolicus methylotrophy is discussed

    Corrigendum: Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production

    Get PDF
    © 2019 Irla, Heggeset, Nærdal, Paul, Haugen, Le, Brautaset and Wendisch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these termsBacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the −35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 6.5 to 10.2 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.publishedVersio

    Transaldolase in Bacillus methanolicus: Biochemical Characterization and Biological Role in Ribulose Monophosphate Cycle

    Get PDF
    Pfeifenschneider J, Markert B, Stolzenberger J, Brautaset T, Wendisch VF. Transaldolase in Bacillus methanolicus: Biochemical Characterization and Biological Role in Ribulose Monophosphate Cycle. BMC Microbiology. 2020;20: 63.Background The Gram-positive facultative methylotrophic bacterium Bacillus methanolicus uses the sedoheptulose-1,7-bisphosphatase (SBPase) variant of the ribulose monophosphate (RuMP) cycle for growth on the C1 carbon source methanol. Previous genome sequencing of the physiologically different B. methanolicus wild-type strains MGA3 and PB1 has unraveled all putative RuMP cycle genes and later, several of the RuMP cycle enzymes of MGA3 have been biochemically characterized. In this study, the focus was on the characterization of the transaldolase (Ta) and its possible role in the RuMP cycle in B. methanolicus. Results The Ta genes of B. methanolicus MGA3 and PB1 were recombinantly expressed in Escherichia coli, and the gene products were purified and characterized. The PB1 Ta protein was found to be active as a homodimer with a molecular weight of 54 kDa and displayed KM of 0.74 mM and Vmax of 16.3 U/mg using Fructose-6 phosphate as the substrate. In contrast, the MGA3 Ta gene, which encodes a truncated Ta protein lacking 80 amino acids at the N-terminus, showed no Ta activity. Seven different mutant genes expressing various full-length MGA3 Ta proteins were constructed and all gene products displayed Ta activities. Moreover, MGA3 cells displayed Ta activities similar as PB1 cells in crude extracts. Conclusions While it is well established that B. methanolicus can use the SBPase variant of the RuMP cycle this study indicates that B. methanolicus possesses Ta activity and may also operate the Ta variant of the RuMP

    Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production

    Get PDF
    Irla M, Heggeset TM, Naerdal I, et al. Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Frontiers in Microbiology. 2016;7: 1481.Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium

    Hexaene Derivatives of Nystatin Produced as a Result of an Induced Rearrangement within the nysC Polyketide Synthase Gene in S. noursei ATCC 11455

    Get PDF
    AbstractGenetic manipulation of the polyketide synthase (PKS) gene nysC involved in the biosynthesis of the tetraene antifungal antibiotic nystatin yielded a recombinant strain producing hexaene nystatin derivatives. Analysis of one such compound, S48HX, by LC-MS/MS suggested that it comprises a 36-membered macrolactone ring completely decorated by the post-PKS modification enzymes. Further characterization by bioassay has shown that S48HX exhibits antifungal activity. Genetic analysis of the hexaene-producing mutant revealed an in-frame deletion within the nysC gene via recombination between two homologous ketoreductase domain-encoding sequences. Apparently, this event resulted in the elimination of one complete module from NysC PKS, subsequently leading to the production of the nystatin derivative with a contracted macrolactone ring. These results represent the first example of manipulation of a PKS gene for the biosynthesis of a polyene antibiotic

    Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape

    Get PDF
    Irla M, Neshat A, Brautaset T, Rückert C, Kalinowski J, Wendisch VF. Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics. 2015;16(1): 73.Background Bacillus methanolicus MGA3 is a thermophilic, facultative ribulose monophosphate (RuMP) cycle methylotroph. Together with its ability to produce high yields of amino acids, the relevance of this microorganism as a promising candidate for biotechnological applications is evident. The B. methanolicus MGA3 genome consists of a 3,337,035 nucleotides (nt) circular chromosome, the 19,174 nt plasmid pBM19 and the 68,999 nt plasmid pBM69. 3,218 protein-coding regions were annotated on the chromosome, 22 on pBM19 and 82 on pBM69. In the present study, the RNA-seq approach was used to comprehensively investigate the transcriptome of B. methanolicus MGA3 in order to improve the genome annotation, identify novel transcripts, analyze conserved sequence motifs involved in gene expression and reveal operon structures. For this aim, two different cDNA library preparation methods were applied: one which allows characterization of the whole transcriptome and another which includes enrichment of primary transcript 5′-ends. Results Analysis of the primary transcriptome data enabled the detection of 2,167 putative transcription start sites (TSSs) which were categorized into 1,642 TSSs located in the upstream region (5′-UTR) of known protein-coding genes and 525 TSSs of novel antisense, intragenic, or intergenic transcripts. Firstly, 14 wrongly annotated translation start sites (TLSs) were corrected based on primary transcriptome data. Further investigation of the identified 5′-UTRs resulted in the detailed characterization of their length distribution and the detection of 75 hitherto unknown cis-regulatory RNA elements. Moreover, the exact TSSs positions were utilized to define conserved sequence motifs for translation start sites, ribosome binding sites and promoters in B. methanolicus MGA3. Based on the whole transcriptome data set, novel transcripts, operon structures and mRNA abundances were determined. The analysis of the operon structures revealed that almost half of the genes are transcribed monocistronically (940), whereas 1,164 genes are organized in 381 operons. Several of the genes related to methylotrophy had highly abundant transcripts. Conclusion The extensive insights into the transcriptional landscape of B. methanolicus MGA3, gained in this study, represent a valuable foundation for further comparative quantitative transcriptome analyses and possibly also for the development of molecular biology tools which at present are very limited for this organism

    Monitoring Parallel Robotic Cultivations with Online Multivariate Analysis

    Get PDF
    In conditional microbial screening, a limited number of candidate strains are tested at different conditions searching for the optimal operation strategy in production (e.g., temperature and pH shifts, media composition as well as feeding and induction strategies). To achieve this, cultivation volumes of >10 mL and advanced control schemes are required to allow appropriate sampling and analyses. Operations become even more complex when the analytical methods are integrated into the robot facility. Among other multivariate data analysis methods, principal component analysis (PCA) techniques have especially gained popularity in high throughput screening. However, an important issue specific to high throughput bioprocess development is the lack of so-called golden batches that could be used as a basis for multivariate analysis. In this study, we establish and present a program to monitor dynamic parallel cultivations in a high throughput facility. PCA was used for process monitoring and automated fault detection of 24 parallel running experiments using recombinant E. coli cells expressing three different fluorescence proteins as the model organism. This approach allowed for capturing events like stirrer failures and blockage of the aeration system and provided a good signal to noise ratio. The developed application can be easily integrated in existing data- and device-infrastructures, allowing automated and remote monitoring of parallel bioreactor systems.BMBF, 031L0018A, ERASysApp2 - Verbundprojekt: LEANPROT - Entwicklung einer Systembiologie-Plattform für die Entwicklung von lean-proteome-Escherichia coli-Stämmen - Deutsches Teilprojekt ADFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Composition analysis and minimal treatments to solubilize polysaccharides from the brown seaweed Laminaria digitata for microbial growth of thermophiles

    Get PDF
    Publisher's version (útgefin grein)Brown macroalgae (Phaeophyta) hold high potential as feedstock for biorefineries due to high biomass productivity and carbohydrate content. They are, however, a challenging, unconventional feedstock for microbial refining and several processing problems need to be solved to make them a viable option. Pre-treatment is necessary to enhance accessibility and solubility of the biomass components but should be minimal and mild to assure sustainable and cost-effective processing. Here, two routes to pre-treatLaminaria digitata to release polysaccharides were investigated: hot water pre-treatment by autoclaving (121 °C, 20 min or 60 min) and a two-step extraction with mild acid (0.1 M HCl) followed by alkaline treatment. Hot water pre-treatment resulted in partial extraction of a mixture of polysaccharides consisting of alginate, fucoidan and laminarin. After mild acid pre-treatment, alginate was found in the remaining insoluble residues and was extracted in a second step via alkaline treatment using Na2CO3 (0.15 M) at 80 °C and CaCl2 (10%) for the precipitation. In addition to carbohydrates, a fraction of other components such as proteins, phenolic compounds, minerals and trace elements was detected in the extracts. Cultivation of the thermophilic bacterial strains Rhodothermus marinus DSM 16675 and Bacillus methanolicus MGA3 (ATCC 53907) in media supplemented with the respective extracts resulted in growth of both strains, indicating that they were able to utilize the available carbon source for growth. R. marinus displayed the highest cell density in the medium containing the extract from acid pre-treatment, whereas B. methanolicus growth was highest with the extract from hot water pre-treatment.Open access funding provided by Lund University. The authors received financial support for the projects Thermofactories, (Era-net MBT1, grant agreement No 604814), MacroVal (the Swedish research council Formas, grant 2015-769), Marine food resources for new markets (Formas, grant 2018-01863), Macro cascade (Bio-Based Industries Joint Undertaking under EU Horizon 2020, grant agreement No 720755), the Novo Nordisk foundation (grant agreement No NNF18OC00349792) and ProSeaFood, (Era-net SusFood2, grant agreement No 727473).Peer Reviewe

    Special Issue: Recombinant Protein Expression in Microorganisms

    No full text
    Microorganisms are widely used in industrial biotechnology as cell factories for the sustainable production of a wide range of compounds and chemicals [...

    Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains

    Get PDF
    Methanol is regarded as an attractive substrate for biotechnological production of value-added bulk products, such as amino acids and polyamines. In the present study, the methylotrophic and thermophilic bacterium Bacillus methanolicus was engineered into a microbial cell factory for the production of the platform chemical 1,5-diaminopentane (cadaverine) from methanol. This was achieved by the heterologous expression of the Escherichia coli genes cadA and ldcC encoding two different lysine decarboxylase enzymes, and by increasing the overall L-lysine production levels in this host. Both CadA and LdcC were functional in B. methanolicus cultivated at 50°C and expression of cadA resulted in cadaverine production levels up to 500 mg l−1 during shake flask conditions. A volume-corrected concentration of 11.3 g l−1 of cadaverine was obtained by high-cell density fed-batch methanol fermentation. Our results demonstrated that efficient conversion of L-lysine into cadaverine presumably has severe effects on feedback regulation of the L-lysine biosynthetic pathway in B. methanolicus. By also investigating the cadaverine tolerance level, B. methanolicus proved to be an exciting alternative host and comparable to the well-known bacterial hosts E. coli and Corynebacterium glutamicum. This study represents the first demonstration of microbial production of cadaverine from methanol.publishedVersio
    corecore