284 research outputs found

    New paths for modelling freshwater nature futures

    Get PDF
    Freshwater ecosystems are exceptionally rich in biodiversity and provide essential benefits to people. Yet they are disproportionately threatened compared to terrestrial and marine systems and remain underrepresented in the scenarios and models used for global environmental assessments. The Nature Futures Framework (NFF) has recently been proposed to advance the contribution of scenarios and models for environmental assessments. This framework places the diverse relationships between people and nature at its core, identifying three value perspectives as points of departure: Nature for Nature, Nature for Society, and Nature as Culture. We explore how the NFF may be implemented for improved assessment of freshwater ecosystems. First, we outline how the NFF and its main value perspectives can be translated to freshwater systems and explore what desirable freshwater futures would look like from each of the above perspectives. Second, we review scenario strategies and current models to examine how freshwater modelling can be linked to the NFF in terms of its aims and outcomes. In doing so, we also identify which aspects of the NFF framework are not yet captured in current freshwater models and suggest possible ways to bridge them. Our analysis provides future directions for a more holistic freshwater model and scenario development and demonstrates how society can benefit from freshwater modelling efforts that are integrated with the value-perspectives of the NFF. Graphical abstract: [Figure not available: see fulltext.]</p

    Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach

    Get PDF
    Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities

    Reimagining the potential of Earth observations for ecosystem service assessments

    Get PDF
    The benefits nature provides to people, called ecosystem services, are increasingly recognized and accounted for in assessments of infrastructure development, agricultural management, conservation prioritization, and sustainable sourcing. These assessments are often limited by data, however, a gap with tremendous potential to be filled through Earth observations (EO), which produce a variety of data across spatial and temporal extents and resolutions. Despite widespread recognition of this potential, in practice few ecosystem service studies use EO. Here, we identify challenges and opportunities to using EO in ecosystem service modeling and assessment. Some challenges are technical, related to data awareness, processing, and access. These challenges require systematic investment in model platforms and data management. Other challenges are more conceptual but still systemic; they are byproducts of the structure of existing ecosystem service models and addressing them requires scientific investment in solutions and tools applicable to a wide range of models and approaches. We also highlight new ways in which EO can be leveraged for ecosystem service assessments, identifying promising new areas of research. More widespread use of EO for ecosystem service assessment will only be achieved if all of these types of challenges are addressed. This will require non-traditional funding and partnering opportunities from private and public agencies to promote data exploration, sharing, and archiving. Investing in this integration will be reflected in better and more accurate ecosystem service assessments worldwide

    Savanna burning methodology for fire management and emissions reduction: a critical review of influencing factors

    Get PDF
    Savanna fire is a major source of global greenhouse gas (GHG) emissions. In Australia, savanna fire contributes about 3% of annual GHG emissions reportable to the Kyoto Protocol. In order to reduce GHG emissions from savanna burning, the Australian government has developed and approved a Kyoto compliant savanna controlled burning methodology—the first legal instrument of this kind at a global level—under its Emission Reduction Fund. However, this approved methodology is currently only applicable to nine vegetation fuel types across northern parts of Australia in areas which receive on average over 600 mm rainfall annually, covering only 15.4% of the total land area in Australia.Savanna ecosystems extend across a large proportion of mainland Australia. This paper provides a critical review often key factors that need to be considered in developing a savanna burning methodology applicable to the other parts of Australia. It will also inform discussion in other countries intent on developing similar emissions reduction strategies

    Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    Get PDF
    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use1. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments1, 2 and global crop models3 to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[0;47]%–27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4–17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities

    Is the water footprint an appropriate tool for forestry and forest products: The Fennoscandian case

    Get PDF
    The water footprint by the Water Footprint Network (WF) is an ambitious tool for measuring human appropriation and promoting sustainable use of fresh water. Using recent case studies and examples from water-abundant Fennoscandia, we consider whether it is an appropriate tool for evaluating the water use of forestry and forest-based products. We show that aggregating catchment level water consumption over a product life cycle does not consider fresh water as a renewable resource and is inconsistent with the principles of the hydrologic cycle. Currently, the WF assumes that all evapotranspiration (ET) from forests is a human appropriation of water although ET from managed forests in Fennoscandia is indistinguishable from that of unmanaged forests. We suggest that ET should not be included in the water footprint of rain-fed forestry and forest-based products. Tools for sustainable water management should always contextualize water use and water impacts with local water availability and environmental sensitivity

    Increased food production and reduced water use through optimized crop distribution

    Get PDF
    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology - such as irrigation or fertilizers - and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods

    Levers and leverage points for pathways to sustainability

    Get PDF
    Humanity is on a deeply unsustainable trajectory. We are exceeding planetary boundaries and unlikely to meet many international sustainable development goals and global environmental targets. Until recently, there was no broadly accepted framework of interventions that could ignite the transformations needed to achieve these desired targets and goals. As a component of the IPBES Global Assessment, we conducted an iterative expert deliberation process with an extensive review of scenarios and pathways to sustainability, including the broader literature on indirect drivers, social change and sustainability transformation. We asked, what are the most important elements of pathways to sustainability? Applying a social–ecological systems lens, we identified eight priority points for intervention (leverage points) and five overarching strategic actions and priority interventions (levers), which appear to be key to societal transformation. The eight leverage points are: (1) Visions of a good life, (2) Total consumption and waste, (3) Latent values of responsibility, (4) Inequalities, (5) Justice and inclusion in conservation, (6) Externalities from trade and other telecouplings, (7) Responsible technology, innovation and investment, and (8) Education and knowledge generation and sharing. The five intertwined levers can be applied across the eight leverage points and more broadly. These include: (A) Incentives and capacity building, (B) Coordination across sectors and jurisdictions, (C) Pre-emptive action, (D) Adaptive decision-making and (E) Environmental law and implementation. The levers and leverage points are all non-substitutable, and each enables others, likely leading to synergistic benefits. Transformative change towards sustainable pathways requires more than a simple scaling-up of sustainability initiatives—it entails addressing these levers and leverage points to change the fabric of legal, political, economic and other social systems. These levers and leverage points build upon those approved within the Global Assessment's Summary for Policymakers, with the aim of enabling leaders in government, business, civil society and academia to spark transformative changes towards a more just and sustainable world. A free Plain Language Summary can be found within the Supporting Information of this article.Fil: Chan, Kai M. A.. University of British Columbia; CanadáFil: Boyd, David R.. University of British Columbia; CanadáFil: Gould, Rachelle. University of Vermont; Estados UnidosFil: Jetzkowitz, Jens. Staatliches Museum fur Naturkunde Stuttgart; AlemaniaFil: Liu, Jianguo. Michigan State University; Estados UnidosFil: Muraca, Bárbara. University of Oregon; Estados UnidosFil: Naidoo, Robin. University of British Columbia; CanadáFil: Beck, Paige. University of British Columbia; CanadáFil: Satterfield, Terre. University of British Columbia; CanadáFil: Selomane, Odirilwe. Stellenbosch University; SudáfricaFil: Singh, Gerald G.. University of British Columbia; CanadáFil: Sumaila, Rashid. University of British Columbia; CanadáFil: Ngo, Hien T.. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; AlemaniaFil: Boedhihartono, Agni Klintuni. University of British Columbia; CanadáFil: Agard, John. The University Of The West Indies; Trinidad y TobagoFil: de Aguiar, Ana Paula D.. Stockholms Universitet; SueciaFil: Armenteras, Dolors. Universidad Nacional de Colombia; ColombiaFil: Balint, Lenke. BirdLife International; Reino UnidoFil: Barrington-Leigh, Christopher. Mcgill University; CanadáFil: Cheung, William W. L.. University of British Columbia; CanadáFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Driscoll, John. University of British Columbia; CanadáFil: Esler, Karen. Stellenbosch University; SudáfricaFil: Eyster, Harold. University of British Columbia; CanadáFil: Gregr, Edward J.. University of British Columbia; CanadáFil: Hashimoto, Shizuka. The University Of Tokyo; JapónFil: Hernández Pedraza, Gladys Cecilia. The World Economy Research Center; CubaFil: Hickler, Thomas. Goethe Universitat Frankfurt; AlemaniaFil: Kok, Marcel. PBL Netherlands Environmental Assessment Agency; Países BajosFil: Lazarova, Tanya. PBL Netherlands Environmental Assessment Agency; Países BajosFil: Mohamed, Assem A. A.. Central Laboratory for Agricultural Climate; EgiptoFil: Murray-Hudson, Mike. University Of Botswana; BotsuanaFil: O'Farrell, Patrick. University of Cape Town; SudáfricaFil: Palomo, Ignacio. Basque Centre for Climate Change; EspañaFil: Saysel, Ali Kerem. Boğaziçi University; TurquíaFil: Seppelt, Ralf. Martin-universität Halle-wittenberg; AlemaniaFil: Settele, Josef. German Centre for Integrative Biodiversity Research-iDiv; AlemaniaFil: Strassburg, Bernardo. International Institute for Sustainability, Estrada Dona Castorina; BrasilFil: Xue, Dayuan. Minzu University Of China; ChinaFil: Brondízio, Eduardo S.. Indiana University; Estados Unido

    Bacterial Gut Symbionts Contribute to Seed Digestion in an Omnivorous Beetle

    Get PDF
    Obligate bacterial symbionts alter the diets of host animals in numerous ways, but the ecological roles of facultative bacterial residents that colonize insect guts remain unclear. Carabid beetles are a common group of beneficial insects appreciated for their ability to consume insect prey and seeds, but the contributions of microbes to diet diversification in this and similar groups of facultative granivores are largely unknown.Using 16S rRNA gene clone libraries and terminal restriction fragment (tRF) length polymorphism analyses of these genes, we examined the bacterial communities within the guts of facultatively granivorous, adult Harpalus pensylvanicus (Carabidae), fed one of five dietary treatments: 1) an untreated Field population, 2) Seeds with antibiotics (seeds were from Chenopodium album), 3) Seeds without antibiotics, 4) Prey with antibiotics (prey were Acheta domesticus eggs), and 5) Prey without antibiotics. The number of seeds and prey consumed by each beetle were recorded following treatment. Harpalus pensylvanicus possessed a fairly simple gut community of approximately 3-4 bacterial operational taxonomic units (OTU) per beetle that were affiliated with the Gammaproteobacteria, Bacilli, Alphaproteobacteria, and Mollicutes. Bacterial communities of the host varied among the diet and antibiotic treatments. The field population and beetles fed seeds without antibiotics had the closest matching bacterial communities, and the communities in the beetles fed antibiotics were more closely related to each other than to those of the beetles that did not receive antibiotics. Antibiotics reduced and altered the bacterial communities found in the beetle guts. Moreover, beetles fed antibiotics ate fewer seeds, and those beetles that harbored the bacterium Enterococcus faecalis consumed more seeds on average than those lacking this symbiont.We conclude that the relationships between the bacterium E. faecalis and this factultative granivore's ability to consume seeds merit further investigation, and that facultative associations with symbiotic bacteria have important implications for the nutritional ecology of their hosts
    corecore