1,227 research outputs found

    Monodeurated methane in the outer solar system. 2. Its detection on Uranus at 1.6 microns

    Get PDF
    Deuterium in the atmosphere of Uranus has been studied only via measurements of the exceedingly weak dipole lines of hydrogen-deuteride (HD) seen in the visible region of the spectrum. The other sensitive indicator of deuterium in the outer solar system is monodeuterated methane (CH3D) but the two bands normally used ot study this molecule, NU sub 2 near 2200 1/cm and NU sub 6 near 1161 1/cm, have not been detected in Uranus

    Answering Conjunctive Queries under Updates

    Full text link
    We consider the task of enumerating and counting answers to kk-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that these can be maintained efficiently in the following sense. During a linear time preprocessing phase, we can build a data structure that enables constant delay enumeration of the query results; and when the database is updated, we can update the data structure and restart the enumeration phase within constant time. For the special case of self-join free conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical, then query enumeration with sublinear∗^\ast delay and sublinear update time (and arbitrary preprocessing time) is impossible. For answering Boolean conjunctive queries and for the more general problem of counting the number of solutions of k-ary queries we obtain complete dichotomies: if the query's homomorphic core is q-hierarchical, then size of the the query result can be computed in linear time and maintained with constant update time. Otherwise, the size of the query result cannot be maintained with sublinear update time. All our lower bounds rely on the OMv-conjecture, a conjecture on the hardness of online matrix-vector multiplication that has recently emerged in the field of fine-grained complexity to characterise the hardness of dynamic problems. The lower bound for the counting problem additionally relies on the orthogonal vectors conjecture, which in turn is implied by the strong exponential time hypothesis. ∗)^\ast) By sublinear we mean O(n1−Δ)O(n^{1-\varepsilon}) for some Δ>0\varepsilon>0, where nn is the size of the active domain of the current database

    Beyond Worst-Case Analysis for Joins with Minesweeper

    Full text link
    We describe a new algorithm, Minesweeper, that is able to satisfy stronger runtime guarantees than previous join algorithms (colloquially, `beyond worst-case guarantees') for data in indexed search trees. Our first contribution is developing a framework to measure this stronger notion of complexity, which we call {\it certificate complexity}, that extends notions of Barbay et al. and Demaine et al.; a certificate is a set of propositional formulae that certifies that the output is correct. This notion captures a natural class of join algorithms. In addition, the certificate allows us to define a strictly stronger notion of runtime complexity than traditional worst-case guarantees. Our second contribution is to develop a dichotomy theorem for the certificate-based notion of complexity. Roughly, we show that Minesweeper evaluates ÎČ\beta-acyclic queries in time linear in the certificate plus the output size, while for any ÎČ\beta-cyclic query there is some instance that takes superlinear time in the certificate (and for which the output is no larger than the certificate size). We also extend our certificate-complexity analysis to queries with bounded treewidth and the triangle query.Comment: [This is the full version of our PODS'2014 paper.

    Searching for overturning convection in penumbral filaments: slit spectroscopy at 0.2 arcsec resolution

    Full text link
    Recent numerical simulations of sunspots suggest that overturning convection is responsible for the existence of penumbral filaments and the Evershed flow, but there is little observational evidence of this process. Here we carry out a spectroscopic search for small-scale convective motions in the penumbra of a sunspot located 5 deg away from the disk center. The position of the spot is very favorable for the detection of overturning downflows at the edges of penumbral filaments. Our analysis is based on measurements of the Fe I 709.0 nm line taken with the Littrow spectrograph of the Swedish 1 m Solar Telescope under excellent seeing conditions. We compute line bisectors at different intensity levels and derive Doppler velocities from them. The velocities are calibrated using a nearby telluric line, with systematic errors smaller than 150 m/s. Deep in the photosphere, as sampled by the bisectors at the 80%-88% intensity levels, we always observe blueshifts or zero velocities. The maximum blueshifts reach 1.2 km/s and tend to be cospatial with bright penumbral filaments. In the line core we detect blueshifts for the most part, with small velocities not exceeding 300 m/s. Redshifts also occur, but at the level of 100-150 m/s, and only occasionally. The fact that they are visible in high layers casts doubts on their convective origin. Overall, we do not find indications of downflows that could be associated with overturning convection at our detection limit of 150 m/s. Either no downflows exist, or we have been unable to observe them because they occur beneath tau=1 or the spatial resolution/height resolution of the measurements is still insufficient.Comment: Accepted for publication in Ap

    A continuous non-linear shadowing model of columnar growth

    Full text link
    We propose the first continuous model with long range screening (shadowing) that described columnar growth in one space dimension, as observed in plasma sputter deposition. It is based on a new continuous partial derivative equation with non-linear diffusion and where the shadowing effects apply on all the different processes.Comment: Fast Track Communicatio

    Al<sub>5+α</sub>Si<sub>5+Ύ</sub>N<sub>12</sub>, a new Nitride compound

    No full text
    The family of III-Nitride semiconductors has been under intensive research for almost 30 years and has revolutionized lighting applications at the dawn of the 21st century. However, besides the developments and applications achieved, nitride alloys continue to fuel the quest for novel materials and applications. We report on the synthesis of a new nitride-based compound by using annealing of AlN heteroepitaxial layers under a Si-atmosphere at temperatures between 1350 °C and 1550 °C. The structure and stoichiometry of this compound are investigated by high resolution transmission electron microscopy (TEM) techniques and energy dispersive X-Ray (EDX) spectroscopy. Results are supported by density functional theory (DFT) calculations. The identified structure is a derivative of the parent wurtzite AlN crystal where the anion sublattice is fully occupied by N atoms and the cation sublattice is the stacking of 2 different planes along lt;0001gt;: The first one exhibits a ×3 periodicity along lt;11–20gt; with 1/3 of the sites being vacant. The rest of the sites in the cation sublattice are occupied by an equal number of Si and Al atoms. Assuming a semiconducting alloy, a range of stoichiometries is proposed, Al5+αSi5+ÎŽN12 with α being between −2/3 and 1/4 and ÎŽ between 0 and 3/4. © 2019, The Author(s)

    Animal Models of Zika Virus Sexual Transmission

    Get PDF
    ZIKV was first identified in the 1940s as a mosquito-borne virus; however, sexual transmission, which is uncommon for arboviruses, was demonstrated more than 60 years later. Tissue culture and animal models have allowed scientists to study how this transmission is possible. Immunocompromised mice infected with ZIKV had high viral loads in their testes, and infection of immunocompetent female mice was achieved following intravaginal inoculation or inoculation via mating with an infected male. These mouse studies lead researchers to investigate the individual components of the male reproductive system. In cell culture and mouse models, ZIKV can persist in Sertoli and germ cells of the testes and epithelial cells in the epididymis, which may lead to sexual transmission even after ZIKV has been cleared from other tissues. ZIKV has also been studied in nonhuman primates (NHPs), which appears to mimic the limited human epidemiological data, with low rates of symptomatic individuals and similar clinical signs. Although refinement is needed, these animal models have proven to be key in ZIKV research and continue to help uncovering the mechanisms of sexual transmission. This review will focus on the animal models used to elucidate the mechanisms of sexual transmission and persistence of flaviviruses

    The Infrared Spectrum of Uranium Hollow Cathode Lamps from 850 nm to 4000 nm: Wavenumbers and Line Identifications from Fourier Transform Spectra

    Full text link
    We provide new measurements of wavenumbers and line identifications of 10 100 UI and UII near-infrared (NIR) emission lines between 2500 cm-1 and 12 000 cm-1 (4000 nm to 850 nm) using archival FTS spectra from the National Solar Observatory (NSO). This line list includes isolated uranium lines in the Y, J, H, K, and L bands (0.9 {\mu}m to 1.1 {\mu}m, 1.2 {\mu}m to 1.35 {\mu}m, 1.5 {\mu}m to 1.65 {\mu}m, 2.0 {\mu}m to 2.4 {\mu}m, and 3.0 {\mu}m to 4.0 {\mu}m, respectively), and provides six times as many calibration lines as thorium in the NIR spectral range. The line lists we provide enable inexpensive, commercially-available uranium hollow-cathode lamps to be used for high-precision wavelength calibration of existing and future high-resolution NIR spectrographs.Comment: 23 pages, 6 Figure

    Emergence of small-scale magnetic loops through the quiet solar atmosphere

    Full text link
    We investigate the emergence of magnetic flux in the quiet Sun at very small spatial scales, focusing on the magnetic connection between the photosphere and chromosphere. The observational data consist of spectropolarimetric measurements and filtergrams taken with the Hinode satellite and the Dutch Open Telescope. We find that a significant fraction of the magnetic flux present in internetwork regions appears in the form of Omega-shaped loops. The emergence rate is 0.02 loops per hour and arcsec^{-2}, which brings 1.1 x 10^12 Mx s^{-1} arcsec^{-2} of new flux to the solar surface. Initially, the loops are observed as small patches of linear polarization above a granular cell. Shortly afterwards, two footpoints of opposite polarity become visible in circular polarization within or at the edges of the granule and start to move toward the adjacent intergranular space. The orientation of the footpoints does not seem to obey Hale's polarity rules. The loops are continuously buffeted by convective motions, but they always retain a high degree of coherence. Interestingly, 23% of the loops that emerge in the photosphere reach the chromosphere (16 cases out of 69). They are first detected in Fe I 630 nm magnetograms and 5 minutes later in Mg I b 517.3 nm magnetograms. After about 8 minutes, some of them are also observed in Ca II H line-core images, where the footpoints produce small brightness enhancements.Comment: Accepted for publication in Ap
    • 

    corecore