12 research outputs found

    Nat Genet

    Get PDF
    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.Comment in : Genetic differential calculus. [Nat Genet. 2015] Comment in : Scaling up phenotyping studies. [Nat Biotechnol. 2015

    Impact of Mutations in Arabidopsis thaliana Metabolic Pathways on Polerovirus Accumulation, Aphid Performance, and Feeding Behavior

    Get PDF
    During the process of virus acquisition by aphids, plants respond to both the virus and the aphids by mobilizing different metabolic pathways. It is conceivable that the plant metabolic responses to both aggressors may be conducive to virus acquisition. To address this question, we analyze the accumulation of the phloem-limited poleroviru

    Crop domestication as a step towards reproductive isolation

    No full text
    International audienceSpeciation, Darwin’s mystery of mysteries, is a continuous process that results in genomic divergence accompanied by the gradual increment of reproductive barriers between lineages. Since the beginning of research on the genetics of speciation, several questions have emerged such as: What are the genetic bases of incompatibilities? How many loci are necessary to prevent hybridization and how are they distributed along genomes? Can speciation occur despite gene flow and how common is ecological speciation? Early stages of divergence are key to understand the ecology and genetics of speciation, and semi-isolated species where hybrids can still be produced are particularly relevant

    Fabrication of Two-Component, Brush-on-Brush Topographical Microstructures by Combination of Atom-Transfer Radical Polymerization with Polymer End-Functionalization and Photopatterning.

    No full text
    Poly(oligoethylene glycol methyl ether methacrylate) (POEGMEMA) brushes, grown from silicon oxide surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP), were end-capped by reaction with sodium azide leading to effective termination of polymerization. Reduction of the terminal azide to an amine, followed by derivatization with the reagent of choice, enabled end-functionalization of the polymers. Reaction with bromoisobutryl bromide yielded a terminal bromine atom that could be used as an initiator for ATRP with a second, contrasting monomer (methacrylic acid). Attachment of a nitrophenyl protecting group to the amine facilitated photopatterning: when the sample was exposed to UV light through a mask, the amine was deprotected in exposed regions, enabling selective bromination and the growth of a patterned brush by ATRP. Using this approach, micropatterned pH-responsive poly(methacrylic acid) (PMAA) brushes were grown on a protein resistant planar poly(oligoethylene glycol methyl ether methacrylate) (POEGMEMA) brush. Atomic force microscopy analysis by tapping mode and PeakForce quantitative nanomechanical mapping (QNM) mode allowed topographical verification of the spatially specific secondary brush growth and its stimulus responsiveness. Chemical confirmation of selective polymer growth was achieved by secondary ion mass spectrometry (SIMS)
    corecore