82 research outputs found
The Invalidity of the Laplace Law for Biological Vessels and of Estimating Elastic Modulus from Total Stress vs. Strain: a New Practical Method
The quantification of the stiffness of tubular biological structures is often
obtained, both in vivo and in vitro, as the slope of total transmural hoop
stress plotted against hoop strain. Total hoop stress is typically estimated
using the "Laplace law." We show that this procedure is fundamentally flawed
for two reasons: Firstly, the Laplace law predicts total stress incorrectly for
biological vessels. Furthermore, because muscle and other biological tissue are
closely volume-preserving, quantifications of elastic modulus require the
removal of the contribution to total stress from incompressibility. We show
that this hydrostatic contribution to total stress has a strong
material-dependent nonlinear response to deformation that is difficult to
predict or measure. To address this difficulty, we propose a new practical
method to estimate a mechanically viable modulus of elasticity that can be
applied both in vivo and in vitro using the same measurements as current
methods, with care taken to record the reference state. To be insensitive to
incompressibility, our method is based on shear stress rather than hoop stress,
and provides a true measure of the elastic response without application of the
Laplace law. We demonstrate the accuracy of our method using a mathematical
model of tube inflation with multiple constitutive models. We also re-analyze
an in vivo study from the gastro-intestinal literature that applied the
standard approach and concluded that a drug-induced change in elastic modulus
depended on the protocol used to distend the esophageal lumen. Our new method
removes this protocol-dependent inconsistency in the previous result.Comment: 34 pages, 13 figure
Local structure of intercomponent energy transfer in homogeneous turbulent shear flow
Intercomponent energy transfer by pressure-strain-rate was investigated for homogeneous turbulent shear flow. The rapid and slow parts of turbulent pressure (decomposed according to the influence of the mean deformation rate) are found to be uncorrelated; this finding provides strong justification for current modeling procedure in which the pressure-strain-rate term is split into the corresponding parts. Issues pertinent to scales involved in the intercomponent energy transfer are addressed in comparison with those for the Reynolds-stress and vorticity fields. A physical picture of the energy transfer process is described from a detailed study of instantaneous events of high transfer regions. It was found that the most significant intercomponent energy transfer events are highly localized in space and are imbedded within a region of concentrated vorticity
Pressure-strain-rate events in homogeneous turbulent shear flow
A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed
Scale disparity and spectral transfer in anisotropic numerical turbulence
To study the effect of cancellations within long-range interactions on local isotropy at the small scales, we calculate explicitly the degree of cancellation in distant interactions in the simulations of Yeung & Brasseur and Yeung, Brasseur & Wang using the single scale disparity parameter 's' developed by Zhou. In the simulations, initially isotropic simulated turbulence was subjected to coherent anisotropic forcing at the large scales and the smallest scales were found to become anisotropic as a consequence of direct large-small scale couplings. We find that the marginally distant interactions in the simulation do not cancel out under summation and that the development of small-scale anisotropy is indeed a direct consequence of the distant triadic group, as argued by Yeung, et. al. A reduction of anisotropy at later times occurs as a result of the isotropizing influences of more local energy-cascading triadic interactions. Nevertheless, the local-to-nonlocal triadic group persists as an isotropizing influence at later times. We find that, whereas long-range interactions, in general, contribute little to net energy transfer into or out of a high wavenumber shell k, the anisotropic transfer of component energy within the shell increases with increasing scale separations. These results are consistent with results by Zhou, and Brasseur & Wei, and suggest that the anisotropizing influences of long range interactions should persist to higher Reynolds numbers. The residual effect of the forced distant group in this low-Reynolds number simulation is found to be forward cascading, on average
Recommended from our members
Enhancement of Mass Transfer from Particles by Local Shear-Rate and Correlations with Application to Drug Dissolution
We analyze hydrodynamic enhancement of mass (or heat) release rate from small spherical particles within fluid flows from local flow shear-rate, with application to drug dissolution. Combining asymptotic theories in the high/low shear Peclet number limits in Stokes flow with 205 carefully-developed computational experiments, we develop accurate correlations for shear enhancement of Sherwood/Nusselt number (Sh/Nu) as a function of shear Peclet and Reynolds number (S*, Re S). The data spanned S* from 0 to 500 and Re S from 0 to 10. In Stokes flow our correlations are highly accurate over the entire S* range, whereas for finite Re S < 1 accuracy is good for S* up to a few thousand. Shear enhancement results from highly three-dimensional spiraling flow created by particle spin. We develop a model for particle slip velocity that is inserted into the Ranz/Marshall correlation to show that shear-rate enhancement strongly dominates convection, a result important to drug dissolution.
</div
Recommended from our members
Non-steady wind turbine response to daytime atmospheric turbulence.
Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions.This article is part of the themed issue 'Wind energy in complex terrains'
Recommended from our members
Fourier-physical space coherent structure in flame-vortex interactions relevant to flame-turbulence interactions using a new signal periodization procedure
The aim of the current study is to characterize key multidimensional relationships between coherent structures in physical vs Fourier/scale space representations of flame–turbulence interactions, as a basis for future analysis of the nonlinear couplings between key resolved scale (RS) and subfilter scale (SFS) motions in large-eddy simulation (LES) of premixed turbulent combustion. However, applying the bounded Fourier transform (FTF) in the nonperiodic flame-normal direction requires the removal of nonphysical Fourier content from the boundary discontinuities. To this end, we have developed a broadly applicable “discontinuity pollution removal” procedure for application to the FTF of multidimensional signals with a single nonperiodic direction. The procedure balances periodization of the signal near the boundaries with minimization of signal modification away from the boundaries. We applied the procedure in a physical–Fourier space analysis of the interactions between a flame and single-scale eddies modeled as the impact of a train of two-dimensional (2D) vortices on an initially planar premixed flame. We find that a specific spectrally broad localized coherent structure in Fourier space connects RS to SFS fluctuations in thermal energy and species concentration that, in physical space, are localized to the corrugations in the flame front in response to eddy–flame interactions. Within the RS fluctuations of energy and species concentration, the flame corrugation structure in physical space is found to be localized to sub-volumes within the RS region of 2D Fourier space. This new understanding of physical–Fourier space relationships categorizes classes of RS–SFS interactions relevant to SFS modeling in LES of premixed turbulent combustion.
</p
Designing the climate observing system of the future
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 6 (2018): 80–102, doi:10.1002/2017EF000627.Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs
Recommended from our members
Ozone, aerosol, potential vorticity, and trace gas trends observed at high‐latitudes over North America from February to May 2000
Ozone (O3) and aerosol scattering ratio profiles were obtained from airborne lidar measurements on thirty‐eight flights over seven deployments covering the latitudes of 40°–85°N between 4 February and 23 May 2000 as part of the Tropospheric Ozone Production about the Spring Equinox (TOPSE) field experiment. Each deployment started from Broomfield, Colorado, with bases in Churchill, Canada, and on most deployments, Thule Air Base, Greenland. Nadir and zenith lidar O3 measurements were combined with in situ O3 measurements to produce vertically continuous O3 profiles from near the surface to above the tropopause. Potential vorticity (PV) distributions along the flight track were obtained from several different meteorological analyses. Ozone, aerosol, and PV distributions were used together to identify the presence of pollution plumes and stratospheric intrusions. Ozone was found to increase in the middle free troposphere (4–6 km) at high latitudes (60°–85°N) by an average of 4.6 ppbv/mo (parts per billion by volume per month) from about 54 ppbv in early February to over 72 ppbv in mid‐May. The average aerosol scattering ratios at 1064 nm in the same region increased rapidly at an average rate of 0.36/mo from about 0.38 to over 1.7. Ozone and aerosol scattering were highly correlated over the entire field experiment, and PV and beryllium (7Be) showed no significant positive trend over the same period. The primary cause of the observed O3 increase in the mid troposphere at high latitudes was determined to be the photochemical production of O3 in pollution plumes with less than 20% of the increase from stratospherically‐derived O3
- …