800 research outputs found

    The Structure of the Nucleon: Elastic Electromagnetic Form Factors

    Full text link
    Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discuss the outlook for the future.Comment: arXiv admin note: text overlap with arXiv:1301.0905, arXiv:hep-ph/0609004, arXiv:1411.6908 by other author

    Electroexcitation of the P33(1232), P11(1440), D13(1520), S11(1535) at Q^2=0.4 and 0.65(GeV/c)^2

    Full text link
    Using two approaches: dispersion relations and isobar model, we have analyzed recent high precision CLAS data on cross sections of \pi^0, \pi^+, and \eta electroproduction on protons, and the longitudinally polarized electron beam asymmetry for p(\vec{e},e'p)\pi^0 and p(\vec{e},e'n)\pi^+. The contributions of the resonances P33(1232), P11(1440), D13(1520), S11(1535) to \pi electroproduction and S11(1535) to \eta electroproduction are found. The results obtained in the two approaches are in good agreement with each other. There is also good agreement between amplitudes of the \gamma^* N \to S11(1535) transition found in \pi and \eta electroproduction. For the first time accurate results are obtained for the longitudinal amplitudes of the P11(1440), D13(1520) and S11(1535) electroexcitation on protons.Comment: 9 pages, 9 figure

    Subdiffusion and weak ergodicity breaking in the presence of a reactive boundary

    Full text link
    We derive the boundary condition for a subdiffusive particle interacting with a reactive boundary with finite reaction rate. Molecular crowding conditions, that are found to cause subdiffusion of larger molecules in biological cells, are shown to effect long-tailed distributions with identical exponent for both the unbinding times from the boundary to the bulk and the rebinding times from the bulk. This causes a weak ergodicity breaking: typically, an individual particle either stays bound or remains in the bulk for very long times. We discuss why this may be beneficial for in vivo gene regulation by DNA-binding proteins, whose typical concentrations are nanomolarComment: 4 pages, 1 figure, REVTeX4, accepted to Phys Rev Lett, some typos correcte

    Separated Response Function Ratios in Exclusive, Forward pi(+/-) Electroproduction

    Get PDF
    The study of exclusive pi(+/-) electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio R-L=sigma(pi-)(L) / sigma(pi+)(L) is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of R-T=sigma(pi-)(L) / sigma(pi+)(L) from unity at small -t, to 1/4 at large -t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to perturbative QCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive p pi(+/-) electroproduction on the deuteron at central Q(2) values of 0.6, 1.0, 1.6 GeV2 at W=1.95 GeV, and Q(2)=2.45 GeV2 at W=2.22 GeV. Here, we present the L and T cross sections, with emphasis on R-L and R-T, and compare them with theoretical calculations. Results for the separated ratio R-L indicate dominance of the pion-pole diagram at low -t, while results for R-T are consistent with a transition between pion knockout and quark knockout mechanisms

    Final analysis of proton form factor ratio data at Q(2)=4.0, 4.8, and 5.6 GeV2

    Get PDF
    Precise measurements of the proton electromagnetic form factor ratio R = mu(p)G(E)(p)/G(M)(p) using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of R with momentum transfer Q(2) for Q(2) greater than or similar to 1 GeV2, in strong disagreement with previous extractions of R from cross-section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Lab\u27s Hall A measured R at four Q(2) values in the range 3.5 GeV2 \u3c = Q(2) \u3c = 5.6 GeV2. A possible discrepancy between the originally published GEp-II results and more recent measurements at higher Q(2) motivated a new analysis of the GEp-II data. This article presents the final results of the GEp-II experiment, including details of the new analysis, an expanded description of the apparatus, and an overview of theoretical progress since the original publication. The key result of the final analysis is a systematic increase in the results for R, improving the consistency of the polarization transfer data in the high-Q(2) region. This increase is the result of an improved selection of elastic events which largely removes the systematic effect of the inelastic contamination, underestimated by the original analysis

    Bulk Mediated Surface Diffusion: Non Markovian Desorption with Finite First Moment

    Full text link
    Here we address a fundamental issue in surface physics: the dynamics of adsorbed molecules. We study this problem when the particle's desorption is characterized by a non Markovian process, while the particle's adsorption and its motion in the bulk are governed by a Markovian dynamics. We study the diffusion of particles in a semi-infinite cubic lattice, and focus on the effective diffusion process at the interface z=1z = 1. We calculate analytically the conditional probability to find the particle on the z=1z=1 plane as well as the surface dispersion as functions of time. The comparison of these results with Monte Carlo simulations show an excellent agreement.Comment: 16 pages, 7 figs. European Physical Journal B (in press

    A precise extraction of the induced polarization in the 4He(e,e'p)3H reaction

    Full text link
    We measured with unprecedented precision the induced polarization Py in 4He(e,e'p)3H at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2. The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are over-estimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin independent charge-exchange term in the latter calculation.Comment: submitted to Physical Review Letter
    corecore