51 research outputs found

    Infrared activity of hydrogen molecules trapped in Si

    Get PDF
    The rovibrational-translational states of a hydrogen molecule moving in a cage site in Si, when subjected to an electrical field arising from its surroundings, are investigated. The wave functions are expressed in terms of basis functions consisting of the eigenfunctions of the molecule confined to move in the cavity and rovibrational states of the free molecule. The energy levels, intensities of infrared and Raman transitions, effects of uniaxial stress, and a neighboring oxygen defect are found and compared with existing experimental data

    Microdeletion in a FAAH pseudogene identified in a patient with high anandamide concentrations and pain insensitivity

    Get PDF
    The study of rare families with inherited pain insensitivity can identify new human-validated analgesic drug targets. Here, a 66-yr-old female presented with nil requirement for postoperative analgesia after a normally painful orthopaedic hand surgery (trapeziectomy). Further investigations revealed a lifelong history of painless injuries, such as frequent cuts and burns, which were observed to heal quickly. We report the causative mutations for this new pain insensitivity disorder: the co-inheritance of (i) a microdeletion in dorsal root ganglia and brain-expressed pseudogene, FAAH-OUT, which we cloned from the fatty-acid amide hydrolase (FAAH) chromosomal region; and (ii) a common functional single-nucleotide polymorphism in FAAH conferring reduced expression and activity. Circulating concentrations of anandamide and related fatty-acid amides (palmitoylethanolamide and oleoylethanolamine) that are all normally degraded by FAAH were significantly elevated in peripheral blood compared with normal control carriers of the hypomorphic single-nucleotide polymorphism. The genetic findings and elevated circulating fatty-acid amides are consistent with a phenotype resulting from enhanced endocannabinoid signalling and a loss of function of FAAH. Our results highlight previously unknown complexity at the FAAH genomic locus involving the expression of FAAH-OUT, a novel pseudogene and long non-coding RNA. These data suggest new routes to develop FAAH-based analgesia by targeting of FAAH-OUT, which could significantly improve the treatment of postoperative pain and potentially chronic pain and anxiety disorders. - 2019 The Author(s)Medical Research Council (Career Development Award G1100340 to JJC); Wellcome Trust ( 200183/Z/15/Z to JJC, 095698Z/11/Z and 202747/Z/16/Z to DLHB); Alzheimer's Society (research fellowship to JTB), University of Cambridge Academic Foundation Programme (to MCL); Molecular Nociception Group (to MCL); National Institutes of Health (Bethesda, MD, USA) Ruth L. Kirschstein Institutional National Research Service Award (to MCL); Wellcome Trust funded London Pain Consortium (to JDR); Colciencias through a Francisco Jose de Caldas Scholarship (LASPAU, Harvard University) (to JDR); Canadian Institutes of Health Research (CIHR; to MNH); CIHR (postdoctoral funding to MM)

    Influence of coding variability in APP-Aß metabolism genes in sporadic Alzheimer's disease

    Get PDF
    The cerebral deposition of Aß42, a neurotoxic proteolitic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aß metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aß degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 435 sporadic and mainly late-onset AD cases and 801 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, which were nominally significant, were found to be very rare coding variants (MAF 0.3%-0.8%) that map to genes involved in APP processing (MEP1B), trafficking and recycling (SORL1), Aß extracellular degradation (ACE) and clearance (LRP1). Moreover, four genes (ECE1, LYZ, TTR and MME) have been found as nominally associated to AD using c-alpha and SKAT tests. We suggest that Aβ degradation and clearance, rather than Aβ production, may play a crucial role in the etiology of sporadic AD

    A novel human pain insensitivity disorder caused by a point mutation in ZFHX2

    Get PDF
    Chronic pain is a major global public health issue causing a severe impact on both the quality of life for sufferers and the wider economy. Despite the significant clinical burden, little progress has been made in terms of therapeutic development. A unique approach to identifying new human-validated analgesic drug targets is to study rare families with inherited pain insensitivity. Here we have analysed an otherwise normal family where six affected individuals display a pain insensitive phenotype that is characterized by hyposensitivity to noxious heat and painless bone fractures. This autosomal dominant disorder is found in three generations and is not associated with a peripheral neuropathy. A novel point mutation in ZFHX2, encoding a putative transcription factor expressed in small diameter sensory neurons, was identified by whole exome sequencing that segregates with the pain insensitivity. The mutation is predicted to change an evolutionarily highly conserved arginine residue 1913 to a lysine within a homeodomain. Bacterial artificial chromosome (BAC) transgenic mice bearing the orthologous murine p.R1907K mutation, as well as Zfhx2 null mutant mice, have significant deficits in pain sensitivity. Gene expression analyses in dorsal root ganglia from mutant and wild-Type mice show altered expression of genes implicated in peripheral pain mechanisms. The ZFHX2 variant and downstream regulated genes associated with a human pain-insensitive phenotype are therefore potential novel targets for the development of new analgesic drugs. awx326media1 5680039660001 The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.We thank the Medical Research Council (J.J.C., Career Development Award, G1100340), Wellcome Trust (200183/ Z/15/Z and 101054/Z/13/Z) and Arthritis Research UK (20200) for generous support and Shionogi for an academic research grant (165302). Thanks to the University of Siena for partially funding this research. J.T.B. is supported by a Research Fellowship from the Alzheimer�s Society. J.D.R. received funding from the Wellcome Trust through the London Pain Consortium and from Colciencias through a Francisco Jose de Caldas Scholarship (LASPAU, Harvard University). D.L.H.B. is a Wellcome senior clinical scientist (ref. no. 095698z/11/z and 202747/Z/16/Z) and member of the Wellcome Pain Consortium.Scopu

    Influence of coding variability in APP-Aß metabolism genes in sporadic Alzheimer's disease

    Get PDF
    The cerebral deposition of Aß42, a neurotoxic proteolitic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aß metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aß degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 435 sporadic and mainly late-onset AD cases and 801 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, which were nominally significant, were found to be very rare coding variants (MAF 0.3%-0.8%) that map to genes involved in APP processing (MEP1B), trafficking and recycling (SORL1), Aß extracellular degradation (ACE) and clearance (LRP1). Moreover, four genes (ECE1, LYZ, TTR and MME) have been found as nominally associated to AD using c-alpha and SKAT tests. We suggest that Aβ degradation and clearance, rather than Aβ production, may play a crucial role in the etiology of sporadic AD

    Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry

    Full text link
    In this paper we examine the role of crystal chemistry factors in creating conditions for formation of magnetoelectric ordering in BiFeO3. It is generally accepted that the main reason of the ferroelectric distortion in BiFeO3 is concerned with a stereochemical activity of the Bi lone pair. However, the lone pair is stereochemically active in the paraelectric orthorhombic beta-phase as well. We demonstrate that a crucial role in emerging of phase transitions of the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order types belongs to the change of the degree of the lone pair stereochemical activity - its consecutive increase with the temperature decrease. Using the structural data, we calculated the sign and strength of magnetic couplings in BiFeO3 in the range from 945 C down to 25 C and found the couplings, which undergo the antiferromagnetic-ferromagnetic transition with the temperature decrease and give rise to the antiferromagnetic ordering and its delay in regard to temperature, as compared to the ferroelectric ordering. We discuss the reasons of emerging of the spatially modulated spin structure and its suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table

    Influence of coding variability in APP-Aß metabolism genes in sporadic Alzheimer's disease

    Get PDF
    The cerebral deposition of Aß42, a neurotoxic proteolitic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aß metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aß degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 435 sporadic and mainly late-onset AD cases and 801 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, which were nominally significant, were found to be very rare coding variants (MAF 0.3%-0.8%) that map to genes involved in APP processing (MEP1B), trafficking and recycling (SORL1), Aß extracellular degradation (ACE) and clearance (LRP1). Moreover, four genes (ECE1, LYZ, TTR and MME) have been found as nominally associated to AD using c-alpha and SKAT tests. We suggest that Aβ degradation and clearance, rather than Aβ production, may play a crucial role in the etiology of sporadic AD
    • …
    corecore