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Infrared activity of hydrogen molecules trapped in Si

B. Hourahine and R. Jones
School of Physics, The University of Exeter, Exeter EX4 4QL, United Kingdom

~Received 27 January 2003; published 19 March 2003!

The rovibrational-translational states of a hydrogen molecule moving in a cage site in Si, when subjected to
an electrical field arising from its surroundings, are investigated. The wave functions are expressed in terms of
basis functions consisting of the eigenfunctions of the molecule confined to move in the cavity and rovibra-
tional states of the free molecule. The energy levels, intensities of infrared and Raman transitions, effects of
uniaxial stress, and a neighboring oxygen defect are found and compared with existing experimental data.
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Hydrogen molecules have long been expected to be low-
energy defects in Si,1,2 but the observation by infrared~IR!
absorption of what appeared to be isolated hydrogen mol-
ecules trapped at cage sites was quite unexpected.3,4 While
there is no difficulty in understanding that molecules trapped
at low-symmetry sites in a range of materials6,7 would be IR
active, the same is not true with molecules at tetrahedral cage
sites in Si. The usual argument to explain their activity is that
the lattice electric fieldFi induces a dipole momenta i j F j on
the molecule in directioni.5 Here,a i j is the molecular po-
larizability. However, the electric field at theTd cage site is
actually zero, and a zero-point movement of the center of
mass of the molecule has been invoked to provide an
interaction.8,9 Now, if the molecule can freely rotate, Condon
noted10 that this dipole moment couples with the electric
field of the IR radiation and leads to the same selection rules
as for Raman scattering: namely,D j 50 or 2. In addition,
transitions involving both ortho-H2 with j 51, and para-H2
with j 50, should occur and hencefour IR transitions11 are
expected at low temperatures. However, experiments4 indi-
cate that only one mode at 3618.4 cm21 is detected. This has
led to suggestions that the molecule is static but recent
studies9,12 demonstrate that this is not correct and the mode
arises from aD j 50 transition from a degeneratej 51 state.
Thus it appears that the para-H2 species is not IR active –
possibly because of symmetry reasons.12 A further difficulty
then emerges when considering the transitions for HD. Two
transitions are detected9 corresponding toD j 51 and D j
50. The first disagrees with Condon’s analysis and implies
that something new is needed.

We show here, using a simple model, that the infrared
intensity does not arise from the polarization induced in the
molecule undergoing zero-point motion, but from a polariza-
tion of the Si lattice by the electric field arising from the
quadrupole moment of a rotating molecule. Further, we show
that the ground state of the para-H2 species transforms asA1
and the only dipole allowed transition involves a so far un-
detectedD j 52 transition. Transitions betweenT2 states ac-
counts for the observedD j 50 transition. The effect of a
nonuniformelectric field due to the lattice on the molecule is
crucially important in understanding the activity of HD. We
show that two transitions withD j 50 and 1 then arise. More-
over, the model accounts for the effect of stress and a nearby
oxygen impurity on the molecular spectrum.

The Hamiltonian of the molecule moving in the cage sur-
rounding a tetrahedral site contains kinetic and potential

terms dependent on the center-of-mass coordinates, defined
by spherical polar coordinates (R,Q,F), as well as internal
coordinates defined by the molecular length and orientation
in space (r ,u,f) with the axes assumed parallel to the cube
edges. For a spherical cavity, the translational motion leads
to a center-of-mass wave function described by
f L(R)YLM(Q,F), and the internal motion to rovibrational
wave functionsxn(r 2r e)Yjm(u,f). For illustrative pur-
poses, we takef L(R) to be ad function so that the center of
mass is at a fixed distance,R;0.13 Å, from theTd site: a
value consistent with the zero-point displacement found by
molecular dynamics.13 Our results are, however, insensitive
to R. The electric fieldFi arising from the lattice is modeled
by placing charges of 4e on each Si atom and22e at each
bond center and, where relevant, an additional2e/9 at a
bond centered oxygen interstitial. Such a field is at the upper
limit of what is to be expected. We have assumed that there
is no charge density at theTd site. In fact, this leads to a
reduction in the vibration frequency of the molecule which
we can take into account by reducing the molecular stretch
force constant.14 The potential energy of the molecule de-
pends on the electric fieldFi and its gradientFi , j at the
center of the molecule and is given by6,7

2 1
2 a i j FiF j2

1
3 Q i j Fi , j ,

where the polarizability and quadrupole moment are ex-
pressed in terms of the molecule alignmentr by

a i j 5a~r !d i j 1
g~r !

3r 2 ~3r i r j2r 2d i j !, ~1!

Q i j 5
1

2r 2 Q~r !~3r i r j2r 2d i j !.

This energy depends on both the position of the center of
mass and the molecular alignment. Figure 1 shows this mo-
lecular potential energy, which is dominated by the quadru-
pole term, of the H2 molecule when the center of mass is
located at (R,Q,F), with R50.13 Å, while aligned along
u5Q,f5F with r equal to the equilibrium bond lengthr e .
We note that variations in the potential are;6200 cm21

and directions where the molecule is aligned away from the
four Si neighbors are favored. The weak potential is consis-
tent with ab initio calculations15 and would not prevent mo-
lecular rotation.16 This justifies our use of basis states made
from those of a freely rotating molecule. The Hamiltonian
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matrix elements for each vibrational staten, in the absence
of Fi , are \v0(n11/2)1Bn j ( j 11)/m12LD/M . Here,
v0 ,Bn ,m, and M are the fundamental stretch frequency,
rovibrational constant, reduced mass, and total molecular
mass. 2D/M is the energy separation betweenL50 and 1
cavity states that we take for H2 to be;1000 cm21 which
again can be related to the energy profile of the molecule
around theTd site.13 A Taylor series expansion ofa(r ),g(r ),
andQ(r ) aboutr e with the molecular constants taken from
Refs. 7 and 17 enabled the potential-energy matrix elements
to be found numerically using Lebedev’s method. Matrix el-
ements of this Hamiltonian between different rotational,j
,6, and cavity states,L,2, were found for eachn and the
energy levels and wave functions determined.

The intensity of an infrared transition between statesun
50,n& and un51,m& is related to the transition dipole mo-
mentPi(n,m) in direction i. This has two contributions: the
first comes from the induced dipole, as given by Condon,
and the second comes from the dipole induced in the Si
lattice by the molecule. The second term is found from the
field Fi(a) arising from the quadrupole moment of the mol-
ecule at the site of an atoma with atomic polarizability
aa :23

Pi~n,m!5K n50,nUa i j F j1(
a

aaFi~a!Un51,mL
;A \

2mv0
K nUH a i j8 F j1(

a
aaFi8~a!J UmL ,

~2!

where the prime denotes the derivative withr. The effective
charge for the oscillator isA$2mv0(n,m8 uP(n,m)u2/(3\)%,18

where the sum is over degeneraten and m states. The first
term in Pi is zero whenR50 as thenFi vanishes and is of
order 1023e for R;0.13 Å. The second term dominates and

Fig. 2 shows that itsz component has a magnitude compat-
ible with the experimental effective charge of;0.08e.4 The
strength of a Raman transition is proportional to
(n,m,i , j8 (^nua i j8 um&)2. Condon’s result is easily derived from
Eqs.~1! and ~2! whenFi is a fixed uniform field.

Rotating H2 by 180° about its center of mass leaves the
Hamiltonian and dipole moment unchanged. This symmetry
allows us to classify each state as ‘‘even,’’1, or ‘‘odd,’’
2, corresponding to para- and ortho-hydrogen, respectively.
For H2, the ground state hasA1

1 symmetry and is derived
from orbitals with evenj, while the first excited state hasT2

2

symmetry and arises from orbitals with oddj. Both states
have contributions from theL50 andL51 cavity orbitals.
Figure 3 shows the ground-state wave function that is peaked
in the troughs of the potential, i.e., in the direction away
from the Si atoms.

FIG. 1. Potential energy~per centimeter! of the H2 molecule at
(R,Q,F) with R50.13 Å and aligned along (Q,F). The direc-
tions to the four Si neighbors correspond toQ554.5°,F5135°
and 315°,Q5125.3°,F545° and 225°, and to peaks in the po-
tential.

FIG. 2. z component of effective charge vectora i j8 (u,f)F j

1(aaaFi8(u,f,a), in units ofe, of a H2 molecule at theTd site vs
u,f describing its alignment. Note that the effective charge varies
by 60.15e.

FIG. 3. A1
1 wave function for center of mass of H2 molecule at

(R,Q,F), with R50.13 Å, and aligned along (Q,F). Note that
the peaks correspond with directions away from the four Si neigh-
bors. The wave function is normalized over the surface of a sphere.

RAPID COMMUNICATIONS

B. HOURAHINE AND R. JONES PHYSICAL REVIEW B67, 121205~R! ~2003!

121205-2



The dipole moment transforms asT2
1 and hence an orbit-

ally degenerate statemust comprise the initial or final IR
transition and parity must be conserved. Thus, as noted in
Ref. 9, transitions betweenA1

1 states are IR inactive, in con-
trast with transitions betweenT2

2 states of ortho-hydrogen.
Figure 4 shows the lowest-energy states and their symmetries
for n50 and 1 along with the intensities of the IR and
Raman-active transitions between them. An IR-active transi-
tion @not shown in Fig 4~a!# involving para-H2 betweenA1

1

and T2
1 , derived primarily from a j 52 orbital, occurs

;340 cm21 above the ortho-transition with an effective
charge of;0.1e, but this has not been detected. The only
detected transition, labeleda in Fig 4~a!, has a strength in
good agreement with the calculation. Very recently, Raman
scattering has detected the transition betweenA1

1 states in
both H2 and D2.19

For HD on the other hand, rotating the molecule by 180°
about its center of mass displaces the center of the molecule
to a new location. Its interaction with the surrounding lattice
is then changed, as the fieldFi is nonuniform, and the
Hamiltonian and dipole moment are now different. Parity is
thennot conserved and transitions betweenA1 andT2 states
are now possible as shown in Fig. 4~b!. At low temperatures,
only theA1→T2 b transition is seen but the stronger transi-
tion betweenT2 states, labeleda, is detected at*23 K after
molecules have been thermally excited fromA1 to T2. The
experimental ratio of the effective charges for thea and b
transitions is 2.6:1 compared with 2:1 found here. The
weakerT2→A1 transitionc has not been reported to date.
The calculatedn50,A1-T2 separation of 74 cm21 is in very
good agreement with the experimental value of 71 cm21.

Application of a general stress results in a displacement of
the lattice and a change to the fieldFi . The symmetry is now
lowered leading to a splitting of theT2

2 levels. We take the
atomic displacements to be given by elasticity theory and
Fig. 5 shows the calculated splittings in theT2

2 manifolds for
H2. We find the piezospectroscopic parametersBg , Cg , Be ,
and Ce ~Fig. 5!, respectively, to be 4.3, 5.4, 4.6, and
5.5 cm21 GPa21. These are in excellent agreement with ex-
perimental values of 4.5, 5.4, 4.5, and 5.4 cm21 GPa21

found by assuming identical shifts forn50 andn51. For
D2, we get 4.1, 5.3, 4.2, and 5.9 cm21 GPa21 demonstrating
that the splittings are almost independent of isotopic mass in
agreement with earlier theoretical and experimental
findings.12 As has been noted previously, this result arises
from the mass independence of the interaction given
in Eq. ~1!.

The presence of oxygen at a neighboring bond center site
leads to an additional electric field and a change in symmetry
to C1h , or to C`h if the lattice field is negligible. This also
results in a splitting of theT2 states and to a greater number
of IR transitions. We assume that the perturbation by oxygen
can be modeled by a single point charge, and neglect the
strain due to the impurity, and show in Fig. 6 the spectra for
H2, HD, and D2. Experimentally for H2, transitionsa, b, and
c are detected20 in agreement with the calculations with the
energy separationsc-b and a-b being 6.1 and 57.9 cm21,
respectively, compared with 10 and 68 cm21 found here.

For HD, four transitions,h, b, a, andd are observed—two
weak ones from the ground and two from the first excited

FIG. 4. Calculated rovibrational levels of~a! H2, ~b! HD, and
~c! D2 at theTd site in silicon. For H2 and D2, only transitionsa are
IR active with effective charges of 0.1e, while both a and b are
Raman active with relative strengths of 3:1. For HD, transitionsa,
b, and c are all infrared active with effective charges of 0.12e,
0.06e and 0.06e. Only transitionsa and d are Raman active with
relative strengths of 3:1. The nuclear wave functions and degen-
eracy have not been included in the symmetry classification of the
states or the transition strengths. FIG. 5. The calculated splitting of theT2

2→T2
2 transitions of H2

at the Td site for @100# and @111# applied stress. The effective
charges of the split components are shown along with polarization
selection rules.
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state. We find that transitionsa–h are all active with transi-
tions b–e all being of similar activity. The energy separa-
tions and transition strengths found here for all the defects
are not especially sensitive to the parametersR andD, but in
the case of oxygen, they are sensitive to the assumed charge
on oxygen and clearly the model will only obtain the correct
transitions if this is modeled correctly. If the lattice polariza-
tion is reduced with respect to the charge on oxygen, then
agreement is found with experiment in that only two domi-
nant transitionsh, b from the ground, anda, d from the first
excited state, occur. The separation ofb andh according to
our theory is 40 cm21 and about twice the observed value of

19 cm21 but the separation betweena andd is 48 cm21 in
fair agreement with experiment at 58.6 cm21. Much better
agreement with the experimental ortho-para splitting has
been found by a similar method but using a quite different
perturbing potential.21

In conclusion, we have found that the IR activity of the
molecule does not require a movement of the molecule away
from the tetrahedral site, as has been thought previously, but
a polarization of the surrounding lattice. The effective
charges relating to the strengths of the IR transition are then
the same for H2 as D2 and in agreement with the data, unlike
a model where the activity arises from a displacement of the
molecule from the lattice site.21 The splitting of the lines
observed under stress, or by the presence of a neighboring
oxygen impurity, can be modeled in a simple way and the
results are in reasonable agreement with experiment. The
analysis shows that there are other as yet undetected IR tran-
sitions at low temperatures albeit with low intensities. The
method we have introduced is clearly applicable to mol-
ecules in a wide range of materials, e.g., GaN.

Finally, we note an interesting consequence of the split-
ting of the T2

2 state of H2 in the presence of oxygen. The

energy separation between the energetically lowest ortho-A82

state and para-A81 states is only 82 cm21 for H2 near O,
compared with 118 cm21 for H2 at a Td site. This implies
that ortho molecules would favor the former sites. It is
known that H2 is weakly bound to oxygen with a binding
energy about 0.28 eV.22 Upon warming to around 30 °C,
molecules move reversibly between the two sites. Thus
ortho-H2 near oxygen sites is in equilibrium with the same
nuclear species atTd sites. This is also true for the para
species. However, the binding energy of ortho-H2 at O sites
is lower by 118282 or 36 cm21 than for para-H2. Thus, the
equilibrium fraction of ortho- to para-H2 species at oxygen
sites should be about 20% larger than atTd sites. Such an
effect has not yet been reported.

We thank Ron Newman for many discussions during the
course of this work.
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respectively. Transitionsb and c are also strongly Raman active
with relative strengths 1:1. For HD, transitionsa–h are all infrared
active with effective charges of 0.08e, 0.06e, 0.06e, 0.06e, 0.06e,
0.05e, 0.04e, and 0.03e. Only transitionsb and d are strongly
Raman active with equal strengths. TheE state of HD is split by
about 9 cm21.
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