70 research outputs found

    The Swr1 chromatin-remodeling complex prevents genome instability induced by replication fork progression defects.

    Get PDF
    Genome instability is associated with tumorigenesis. Here, we identify a role for the histone Htz1, which is deposited by the Swr1 chromatin-remodeling complex (SWR-C), in preventing genome instability in the absence of the replication fork/replication checkpoint proteins Mrc1, Csm3, or Tof1. When combined with deletion of SWR1 or HTZ1, deletion of MRC1, CSM3, or TOF1 or a replication-defective mrc1 mutation causes synergistic increases in gross chromosomal rearrangement (GCR) rates, accumulation of a broad spectrum of GCRs, and hypersensitivity to replication stress. The double mutants have severe replication defects and accumulate aberrant replication intermediates. None of the individual mutations cause large increases in GCR rates; however, defects in MRC1, CSM3 or TOF1 cause activation of the DNA damage checkpoint and replication defects. We propose a model in which Htz1 deposition and retention in chromatin prevents transiently stalled replication forks that occur in mrc1, tof1, or csm3 mutants from being converted to DNA double-strand breaks that trigger genome instability

    Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains

    Get PDF
    Replication across damaged DNA templates is accompanied by transient formation of sister chromatid junctions (SCJs). Cells lacking Esc2, an adaptor protein containing no known enzymatic domains, are defective in the metabolism of these SCJs. However, how Esc2 is involved in the metabolism of SCJs remains elusive. Here we show interaction between Esc2 and a structure-specific endonuclease Mus81-Mms4 (the Mus81 complex), their involvement in the metabolism of SCJs, and the effects Esc2 has on the enzymatic activity of the Mus81 complex. We found that Esc2 specifically interacts with the Mus81 complex via its SUMO-like domains, stimulates enzymatic activity of the Mus81 complex in vitro, and is involved in the Mus81 complex-dependent resolution of SCJs in vivo. Collectively, our data point to the possibility that the involvement of Esc2 in the metabolism of SCJs is, in part, via modulation of the activity of the Mus81 complex

    SMC 5/6 acts jointly with Fanconi anemia factors to support DNA repair and genome stability

    Get PDF
    SMC5/6 function in genome integrity remains elusive. Here, we show that SMC5 dysfunction in avian DT40 B cells causes mitotic delay and hypersensitivity toward DNA intra- and inter-strand crosslinkers (ICLs), with smc5 mutants being epistatic to FANCC and FANCM mutations affecting the Fanconi anemia (FA) pathway. Mutations in the checkpoint clamp loader RAD17 and the DNA helicase DDX11, acting in an FA-like pathway, do not aggravate the damage sensitivity caused by SMC5 dysfunction in DT40 cells. SMC5/6 knockdown in HeLa cells causes MMC sensitivity, increases nuclear bridges, micronuclei, and mitotic catastrophes in a manner similar and non-additive to FANCD2 knockdown. In both DT40 and HeLa systems, SMC5/6 deficiency does not affect FANCD2 ubiquitylation and, unlike FANCD2 depletion, RAD51 focus formation. SMC5/6 components further physically interact with FANCD2-I in human cells. Altogether, our data suggest that SMC5/6 functions jointly with the FA pathway to support genome integrity and DNA repair and may be implicated in FA or FA-related human disorders

    Replication and Recombination Factors Contributing to Recombination-Dependent Bypass of DNA Lesions by Template Switch

    Get PDF
    Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair

    DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License.-- et al.DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination mediated (error-free) and translesion synthesis-mediated (errorprone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication- associated lesions into the errorfree DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C-terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication-associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability. © 2014 The Authors.SJ is supported by Max Planck Society, Deutsche Forschungsgemeinschaft, Fonds der chemischen Industrie, Center for Integrated Protein Science Munich, and Louis‐Jeantet Foundation; DB, by the ERC grant REPSUBREP 242928, the AIRC grant IG10637, the Telethon grant GGP12160 and by FIRC.Peer Reviewe

    Ubiquitin family modifications and template switching

    Get PDF
    AbstractHomologous recombination plays an important role in the maintenance of genome integrity. Arrested forks and DNA lesions trigger strand annealing events, called template switching, which can provide for accurate damage bypass, but can also lead to chromosome rearrangements. Advances have been made in understanding the underlying mechanisms for these events and in elucidating the factors involved. Ubiquitin- and SUMO-mediated modification pathways have emerged as key players in regulating damage-induced template switching. Here I review the biological significance of template switching at the nexus of DNA replication and recombination, and the role of ubiquitin-like modifications in mediating and controlling this process

    Hot on RAD51C: structure and functions of RAD51C‐XRCC3

    No full text
    A new study by Longo, Roy et al. has solved the structure of the RAD51C‐XRCC3 (CX3) heterodimer with a bound ATP analog, identifying two main structural interfaces and defining separable replication fork stability roles. One function relates to the ability of RAD51C to bind and assemble CX3 on nascent DNA, with an impact on the ability of forks to restart upon replication stress. The other relates to effective CX3 heterodimer formation, required for 5′ RAD51 filament capping, with effects on RAD51 filament disassembly, fork protection and influencing the persistence of reversed forks
    corecore