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Homologous recombination plays an important role in the maintenance of genome integrity.
Arrested forks and DNA lesions trigger strand annealing events, called template switching, which
can provide for accurate damage bypass, but can also lead to chromosome rearrangements.
Advances have been made in understanding the underlying mechanisms for these events and in elu-
cidating the factors involved. Ubiquitin- and SUMO-mediated modification pathways have emerged
as key players in regulating damage-induced template switching. Here I review the biological signif-
icance of template switching at the nexus of DNA replication and recombination, and the role of
ubiquitin-like modifications in mediating and controlling this process.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

Many endogenous and exogenous events, such as transcription,
DNA packaging proteins, developmentally regulated genome rear-
rangements, as well as chemical and physical agents in the envi-
ronment give rise to DNA lesions. Although DNA damage needs
to be repaired or bypassed in order to ensure cell survival and
replication completion, the repair and DNA damage tolerance
(DDT) processes are often error-prone, leading to mutations and
alterations in chromosome structure, such as chromosome translo-
cations, partial deletions and amplifications. These chromosome
alterations are associated with various disorders including devel-
opmental defects, neurodegeneration and cancer [1]. Chromo-
somal translocations are thought to arise mainly through
inappropriate repair of DNA double strand breaks (DSBs) or by rep-
lication fork slippage events, some of which are called ‘‘template
switching’’ [2]. In addition, single strand (ss) DNA gaps or breaks
(SSBs) generated during replication or as intermediates in other
repair processes can trigger recombination or lead to subsequent
formation of DSBs. Cells have evolved two major pathways to
repair DSBs: homologous recombination (HR), which requires the
presence of a homologous template and generally provides for
accurate repair in S and G2 phases of the cell cycle [3], and
non-homologous end-joining (NHEJ), which is often mutagenic,
does not require a template DNA and can operate throughout the
cell cycle [4]. Although all HR reactions involve a switch to a
cal Societies. Published by Elsevier
homologous sequence that becomes template for repair, ‘‘template
switching’’ is not generally used to refer to this step of HR.

Genetic studies have drawn the attention to the existence of
damage tolerance mechanisms that promoted damage bypass
and/or repeat-induced rearrangements. Based on the genetic
requirements for these events, it was inferred that they were
unlikely to initiate from DSBs but rather by strand annealing
mechanisms that involved a switch of template strands during
replication [5–10]. Therefore these events were said to arise
through ‘‘template switching’’ [11].

This review focuses on replication fork responses to stresses
such as DNA damage, replication fork barriers (RFB), and repetitive
elements, which are likely to trigger template switching. After a
general overview of template switching and how it is initiated un-
der different replication stress contexts, I outline recent insights
regarding the contribution of different factors and I highlight the
role of ubiquitin-like modifications in mediating and controlling
template switching. For a more general description of the role of
ubiquitin modifications in HR-mediated DSB repair and/or replica-
tion, the readers are directed to other recent reviews addressing
these topics [12–15].

2. Template switching in the context of HR and replication

HR plays a major role in promoting repair of DSBs using a
homologous template (a sister chromatid or a homologous chro-
mosome) and in promoting restart when progression of the repli-
cation fork is blocked (reviewed in [16,17]). The strand exchange
B.V. Open access under CC BY-NC-ND license.
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step in HR is mediated by nucleation of Rad51 on RPA-coated
ssDNA. The Rad51 nucleoprotein filament then catalyzes homolo-
gous pairing and invasion of a donor duplex to form a D-loop
structure that initiates repair synthesis [3,18]. It has been shown
that recombination between direct and inverted repeats can occur
in the absence of Rad51, in a manner dependent on Rad59
[8,19,20]. Rad59, homologous with the DNA binding domain of
Rad52, which is required for all HR reactions [3,18], promotes
single strand annealing (SSA), but is unable to stimulate Rad51-
mediated strand exchange [8,21–23]. These events, together with
damage tolerance mechanisms mediated by RAD18–RAD6 genes
[5,6,11,24] (see below), were proposed to occur by template
switching during replication.

The models accounting for template switching emphasize the
importance of genomic architectural elements such as repeats or
DNA damage that may cause the initial stalling of the fork and then
facilitate annealing to the sister chromatid or to the same template
strand in case of direct repeats. This results in juxtaposition of
non-contiguous DNA sequences, ranging from a few hundred base
pairs to megabases (reviewed in [2]). Recently, a number of studies
have proposed that such template switching events may occur not
only on closely adjacent sites but also over long distances on other
forks [25–27]. Furthermore, these fork arrest-induced events can
be driven by as few as two to six nucleotides of microhomologies
[26,28]. Template switching was thus proposed to account for
complex genomic rearrangements in human cells [26,29–32].

The definition of template switching became even more com-
plex due to distinct opinions of whether events classified as such
involve a DSB intermediate [33–37] and if they occur at the stalled
fork as means of rescuing the fork or rather behind the replication
fork [15,38–41] (Fig. 1). Furthermore, although initially template
switching was used to distinguish replication-induced strand-
annealing events from Rad51-mediated DSB repair and fork rescue,
this is not anymore the case. It is becoming clear that different
template switching events show distinct requirements for Rad51
[7,34,35,42]. Furthermore, collapsed forks generate DSBs with only
one free end that are repaired by break-induced replication (BIR)
[43]; this process involves several rounds of ‘‘template switching’’,
Fig. 1. Representation of mechanisms that promote template switch events at the fork or
The factors with Ubiquitin and SUMO-related activities are highlighted in red.
that is, multiple cycles of strand invasion, DNA synthesis and dis-
sociation [31,32].

Notably, although ‘‘template switching’’ was used to explain the
function of the Rad18–Rad5 pathway in damage tolerance in a
manner that was thought to be independent of HR [5,39], recent
findings suggest that Rad18–Rad5 may act in certain contexts
coordinately with recombination factors to enable joining of sister
chromatids and damage bypass by template switching
[33,41,42,44]. Furthermore, evidence was provided that the
Rad18–Rad5 pathway plays a role not only in replication comple-
tion and gap-filling by template switching [41,42,45–47], but also
in DSB repair by HR [48–54].

With these historical considerations mentioned, it is important
to note that only a subset of template switch events have been
characterized for genetic requirements and/or DNA structures that
may assist the transitions. Those are primarily damage- and repli-
cation fork block (RFB)-induced template switching and BIR, using
budding and fission yeast as model organisms. Below follows an
overview of these processes and the factors involved in regulating
them.

3. Damage- and RFB-induced template switching

Bulky DNA lesions or RFBs can obstruct active replication forks
leading to transient arrest. Based on evidence from Escherichia coli
and in vitro studies using SV40 [55,56], it has been suggested that
when DNA damage blocks the leading or the lagging strand, the
normally coupled strand synthesis becomes uncoupled [57].
Prolonged stalling without restart can cause the replisome to dis-
sociate, leading to replication fork collapse. The types of blocks that
initially stalled the progression of the fork may influence the
choice of damage-bypass events and of the polymerase carrying
out the bypass [58,59], but details on the mechanisms underlying
such events are missing. In addition to damage-bypass processes
occurring to reactivate a stalled fork, recent evidence suggests that
RAD6- and RAD18-mediated damage tolerance mechanisms in
yeast cells operate largely on gaps behind replication forks
[40,60]. Based on in vitro studies in E. coli it has been suggested
behind the fork through strand annealing or strand-invasion mediated mechanisms.
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that such gaps are formed by repriming events that initiate replica-
tion downstream of the lesion [61], thus leaving the obstructing
damage contained in an internal gap behind the fork (Fig. 1).

HR has been implicated as a major mechanism involved in
the restart of blocked forks [28,34,62,63] as well as in the filling
of the gaps induced by replication of UV- and MMS-damaged
templates [42,64–67] (Fig. 1). Genetic studies conducted in
Saccharomyces cerevisiae established that besides HR, DDT requires
genes belonging to the RAD6–RAD18 epistasis group, often referred
to as post-replication repair (PRR) [24,45]. Proteins of the RAD18
pathway are well conserved and have been implicated in DDT
and gap-filling in both yeast and mammalian cells [42,47,68–73].
Rad6 and Rad18 control two distinct damage bypass pathways.
One pathway involves DNA synthesis across the damaged template
by translesion synthesis polymerases; this mechanism operates
with high fidelity for UV lesions but is error-prone for most types
of damage, and therefore is often mutagenic [74]. The second path-
way is error-free bypass, is controlled by RAD5–MMS2–UBC13
genes encoding ubiquitin ligases and ubiquitin conjugating en-
zymes that mediate PCNA polyubiquitylation [75] (see below),
and is hypothesized to involve a switch of templates in which
the blocked nascent strand uses the undamaged sister chromatid
as a temporary replication template [24] (Fig. 1). The initial model
proposed that this bypass occurs likely through a reversed fork
intermediate, and without any requirement for recombination pro-
teins [11]. Although Rad5, which is also an ATPase [76], can pro-
mote fork reversal in vitro [77], whether the reversed fork
intermediate promotes error-free DDT in vivo remains a matter
of debate (reviewed in [15,78]). Recent data suggested instead a
recombination-like invasion mechanism in which the blocked nas-
cent chain invades the opposite homologous duplex and uses the
sister chromatid as a template [41,42,64,79] (Fig. 1). Whereas the
reversed fork model restricts these events to the fork, the recombi-
nation-like invasion mechanism can theoretically occur either at
the fork or behind the fork. Recent studies provided evidence that
the Rad18 error-free pathway operates largely to promote gap-
filling behind the replication fork [40,42,60]. Under conditions that
induce site-specific stalling at replication origins, the Rad5-
mediated pathway may promote fork restart [41]; whether this
is specific for adozelesin-induced lesions and lesion density in
the immediate proximity of origins is still not known. In both
cases, compelling evidence suggests that the action of the error-
free PRR pathway occurs through a recombinational mechanism
and leads to the formation of X-shaped structures involving sister
chromatid junctions (SCJs).

Based on the biochemical properties of these molecules, it has
been suggested that template switching behind the fork leads to
X-structures that contain ssDNA, and in which the sister chromat-
ids are linked through base-pairing established by Pold-mediated
DNA synthesis [42,64,67,80]. These template switch intermediates
may contain also Holliday Junctions (HJs) [81] (Fig. 1). On the other
hand, template switching at the fork was proposed to lead to the
formation of HJs [62,82]. Notably, the role of the Rad18–Rad5
error-free pathway in such processes requires ubiquitin conjuga-
tion and ligase activities [42,82] that are summarized below.
4. Ubiquitin- and SUMO- mediated regulation of template
switching

Most factors of the error-free RAD18 PRR pathway have
ubiquitin conjugating or ligating activities [83–85] and their role
in DNA damage bypass is associated with ubiquitin and SUMO
modifications of PCNA [75]. In response to DNA-damage, PCNA is
mono- or polyubiquitylated at the highly conserved lysine residue
K164. Monoubiquitylation depends on the Rad6–Rad18 E2–E3
ubiquitin-conjugating complex [75] and promotes translesion
synthesis [86,87]. The error-free template switch bypass is further
controlled by the E3 ligase Rad5 that stimulates the E2 ubiquitin
conjugating activity of the Mms2–Ubc13 complex to synthesize
K63-linked polyubiquitin chains onto monoubiquitylated PCNA
[75]. PCNA polyubiquitylation and error-free PRR factors (Rad18–
Rad5–Mms2–Ubc13) are required for gap-filling damage tolerance
[46,47,71,75,88] and for template switching-mediated SCJ
formation behind replication forks [42,89] (Fig. 1). Furthermore,
Rad5 (and its ligase activity) is required for formation of template
switch structures containing HJs at forks stalled at replication ori-
gins by drugs such as adozelesin with specificity for AT-rich DNA
sequences [82] (Fig. 1).

In addition, genetic studies have shown a role for Rad18 and
Rad5 in fortuitous template switching during replication. Rad18–
Rad5 promotes direct repeat instability and expansions of GAA
trinucleotide repeats and the pentanucleotide repeat (ATTCT)n
[6,90,91], whereas it restricts CAG/CTG expansions [92]. Anc1—a
protein associated with multiple transcription and chromatin
remodeling complexes and that together with Rad5 defines a
new branch of error-free PRR, also suppresses the expansion of
CAG repeats [93], although its role in template switching and PCNA
modifications has not been yet analyzed. A modest role for Rad18
and PCNA monoubiquitylation in mediating BIR was also demon-
strated [94].

In addition to being ubiquitylated, yeast PCNA is also sumoylat-
ed at two lysine residues, K164 and K127 [75]. Biochemically,
sumoylation and ubiquitylation of PCNA are not dependent on
one another [75,95,96]. However, in the absence of PCNA sumoyla-
tion, the ability of the error free PRR pathway to promote forma-
tion of damage-induced SCJs associated with template switching
is impaired [42]. These results suggest that PCNA sumoylation
favors damage-bypass of lesions by enabling the utilization of
factors belonging to the error-free branch of PRR (Fig. 1). The
mechanism underlying this phenomenon is unclear, but it may
be mediated by interactions between SUMO-modified PCNA and
Srs2—a helicase promoting channeling of lesions into the Rad18–
Rad5 pathway [95,96], or between PCNA and other members of
the error-free PRR pathway, such as Rad18, Rad5 and Elg1
[95,97]. Alternatively, or additionally, sumoylation may affect
chromatin structure in a manner that impinges on the accessibility
of PRR and/or HR factors to DNA lesions. Indeed, the chromatin
remodeler INO80 was shown to affect template switch events
and Rad18-recruitment to damaged replication forks [98].

In addition, sumoylation as well as PCNA- and Srs2-related
activities have been implicated in replication fork restart at specific
RFBs [99]. In fission yeast, the RTS1 element is a mating type locus-
specific RFB that ensures efficient mating type switching by regu-
lating the direction of replication [100]. The Rtf1 protein binds to
a single RTS1 DNA sequence and the Rtf1–RTS1 protein–DNA com-
plex blocks DNA replication and ensures unidirectional replication
through the mating type locus. Inagawa et al. have identified that
Rtf2, a PCNA-interacting protein, works together with SUMO to pro-
mote termination at RTS1; in the absence of Rtf2 and SUMO
stabilizing activities of the stalled fork, replication forks are re-
established in an Srs2-dependent manner [99]. In line with this
result, it has also been shown that when replication forks are effi-
ciently stalled by inserting a pair of RTS1 sequences in inverted
orientation, Srs2 promotes fork restart and template switching [62].
5. Interplay between ubiquitin-mediated activities and HR in
template switching

Several studies have connected the functionality of the
RAD6–RAD18 pathway to HR in the context of DSB repair [51,52].



D. Branzei / FEBS Letters 585 (2011) 2810–2817 2813
Although the RAD18–RAD5 pathway described above plays an
important role in DSB repair, the Rad6 ubiquitin conjugating
enzyme has Rad18-independent roles that affect DDR and HR
(reviewed in [101]). In S. cerevisiae, Rad6 interacts with three
separate ubiquitin ligases, Ubr1, Rad18 and Bre1. Mutations in
Rad18, Bre1 and Ubr1 lead to sensitivity to ionizing radiation
(IR), but each single mutant (rad18, bre1, and ubr1) shows less sen-
sitivity than rad6 [102]. However, the X-ray sensitivity of rad18
ubr1 bre1 strain is equal to that of rad6, suggesting that the func-
tion of Rad6 in DSB repair is accounted by processes involving all
its three known E3 ligase partners. Genetic studies have shown
that of these three pathways the main ones contributing to X-ray
resistance are the RAD18- and BRE1-mediated ones [102]. Bre1
and its associated protein Lge1 act together with Rad6 to promote
histone H2B ubiquitylation on lysine 123 [103–105]. This H2B
ubiquitylation is then required for H3–K4 and H3–K79 di- and
tri-methylation mediated by Set1 and Dot1, respectively [106].
The IR resistance conferred by Bre1 and Dot1 is mediated through
HR repair and not by RAD18-dependent PRR. Although these path-
ways of chromatin modification mediated by Rad6 may affect
other HR-mediated processes such as template switching, this
has not been formally addressed.

Regarding template switching, both Rad18–Rad5 and Rad51-
like recombination factors were shown to be required [42,64,
82,107] (Fig. 1). Although the traditional view based on epistasis
tests holds that Rad18- and Rad51-mediated pathways are parallel
and independent, evidence has started to accumulate for a coordi-
nate action of these factors in template switching and for a role of
error-free PRR factors and PCNA polyubiquitylation in regulating
the activity of HR factors [33,42,51,52,82,108]. In addition, recent
evidence suggested a role for Rad18 and Rad5 in the RAD51-depen-
dent pathway of recombination triggered by inverted repeats [33].

It must be noted that Rad18 and Rad5 have also been docu-
mented to act in template switch events independently of Rad51.
For instance, Rad18 and Rad5 play a role in both RAD51-dependent
and RAD51-independent pathways of recombination at inverted
repeats, with a more prominent role in the RAD51-dependent path-
way [33]. Replication of plasmids containing thymine–thymine
photoadducts in excision-defective yeast strains was shown to oc-
cur largely by recombination, with 60–70% of these events being
dependent on the error-free component of the RAD18 pathway
and the remaining events on the RAD52 pathway [5]; although
the mechanism through which the error-free RAD18 pathway pro-
motes template switching under these circumstances remains
unknown, based on the genetic data provided it can be concluded
that it operates independently of HR factors. Furthermore, Mms2
and Rad51 paralogues, such as Shu1, promote damage-induced
template switch events [42,107], but they affect the damage-
sensitivity and accumulation of template switch intermediates in
smc6 mutants by different mechanisms [89]. In what regards the
role of Rad5 in fortuitous template switching associated with tri-
nucleotide repeat expansion, preliminary genetic data suggested
this function is manifested independently of HR [91,92].

Is the Rad18 pathway activated by similar lesions as the ones
inducing HR? How could Rad18-mediated ubiquitylation events
promote or enhance the efficiency of HR repair in certain condi-
tions? Rad18 interacts with RPA-coated ssDNA present at gaps
and stalled replication forks, and Rad5 interacts with ssDNA and
Rad18 [76,85,109]. After being loaded on the ssDNA regions
formed at stalled forks or on the gaps left behind replication forks,
Rad18 and Rad5 could promote PCNA polyubiquitylation and facil-
itate the recombinational, Rad51-dependent template switch. In
mammalian cells, the ability of Rad18 to stimulate HR-mediated
repair of DSBs involves a direct interaction between Rad18 and a
Rad51 paralogue, Rad51C [49]. In this context, Rad18 functions
as an adaptor protein, as it is recruited to sites of damage through
its interaction with ubiquitin chains and then, by interacting with
Rad51C, it allows the accumulation of HR proteins at sites of
damage [49].

An alternative mechanism could be that Rad18 facilitates
template switch steps occurring downstream of the Rad51-
mediated strand invasion. In support of this view, previous studies
conducted in chicken DT40 cells have found that deletion of the
RAD51 paralogue, XRCC3, suppresses the genome instability and
UV damage sensitivity of rad18 cells [48]. In S. cerevisiae, a role
for the RAD51 paralogues in error-free PRR involving homologous
recombination has been suggested [44]. Furthermore, in budding
yeast, the gross chromosomal rearrangements associated with
rad18 and rad5 depend on Rad51 [110]. Taken together, these
results indicate that homologous recombination may be toxic in
the absence of a functional Rad18–Rad5 pathway.

One documented step in which the Rad18-mediated PCNA poly-
ubiquitylation works downstream of the Rad51-mediated strand
invasion is the DNA synthesis step required to extend the 30 of
the invading end. Recent studies have found that this step is med-
iated specifically by polymerase d [67]. Pold is also required for the
DNA synthesis step of BIR [111]. Interestingly, genetic data have
pointed out that the functionality of Pold in DNA repair is modu-
lated by error-free factors of PRR and by PCNA polyubiquitylation,
which perhaps act to modulate the processivity of Pold during DNA
repair synthesis [40,47,112–114]. It was shown that during BIR,
cells carrying mutation in Pold have limited homology-dependent
DNA synthesis and the repair intermediates are cleaved in a man-
ner that is partly dependent on the Mus81 nuclease [115]. Thus,
the template switch defect observed in rad18, rad5, pcna and Pold
mutants during replication under damaging conditions may be
due not only to defective or abortive DNA synthesis, but also to
cleavage or processing of such incomplete template switch inter-
mediates by nucleases.
6. SUMO-mediated resolution of damage-induced template
switch intermediates

The template switch intermediates need to be resolved in order
to restore a normal replication fork and chromosomal structure.
Several resolvases have been identified in eukaryotic cells: little
is known about their regulation and coordination with one an-
other, but it is becoming clear that their impact on genome
stability and effect on crossover formation is different (reviewed
in [17]). In what regards the resolution of damage-induced tem-
plate switch intermediates, it has been shown that in cells with
an unfunctional RecQ helicase Sgs1 (BLM in humans) or topoiso-
merase III, Top3, SCJ-containing intermediates accumulate in the
proximity of replication forks [64,116]. Considering the genetic
evidence suggesting that Sgs1 works downstream of Rad18–
Rad5- and PCNA polyubiquitylation- [40,42,44], as well as of
Rad51-mediated steps [117,118], and the physical evidence pro-
viding for Sgs1 resolving Rad18, Mms2, PCNA polyubiquitylation,
and Rad51-dependent structures [42], it is reasonable to assume
that Sgs1–Top3 represents the major activity involved in template
switch intermediate resolution. The resolution of these intermedi-
ates in S-phase is controlled and requires sumoylation events
mediated by the E2 conjugating enzyme, Ubc9, and the SUMO E3
ligase Mms21 [119] (Fig. 1). Recently, mutations in the SUMO
deconjugating enzyme, Ulp2, were also shown to accumulate SCJ
intermediates in response to MMS treatment as well as persistent
recombination foci, suggesting that Ulp2 is also required to
suppress or facilitate the resolution of the damage-induced tem-
plate switch intermediates [120]. The SUMO substrates involved
in template switch intermediate resolution are not known, but
they may include structural maintenance of chromosomes (SMC),
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Smc5–6—associated with the Mms21 SUMO ligase, as well as Esc2,
an Smc5–6 functionally associated factor with regulatory functions
in sumoylation. This inference is based on the observation that also
mutations in Esc2 and Smc5–6 lead to accumulation of template
switch structures in the proximity of replication forks [121,122].

Considering that out of the factors that affect damage-induced
template switch intermediate accumulation in S-phase, Sgs1 is
the only protein with potential resolvase activity [81,121,123], it
is perhaps reasonable to assume that Ubc9- and Mms21-,
Smc5–6-mediated sumoylation affects the functionality of
Sgs1–Top3 in this process [119,121] (Fig. 1). Although Sgs1, like
BLM [124], is sumoylated, this sumoylation does not depend on
the Mms21 SUMO ligase [119]. Recently, the lysine K621 of Sgs1
has been identified as a prominent sumoylation site of Sgs1
[125], but the role of Sgs1 sumoylation in template switching re-
mains unknown. The effects of SUMO-mediated events in control-
ling template switch intermediate resolution and/or Sgs1
functionality may be indirect and involve control of chromatin
structure, protein localization, stability and recruitment. Further
studies addressing how genome architecture, topology and chro-
matin structure affect replication-associated repair events should
improve our understanding on the underlying mechanism of tem-
plate switching.
7. Crosstalk between DDR kinases and ubiquitin-mediated
pathways in template switching

The replication and damage checkpoint kinases are known to
affect HR-mediated events and to some extent the error-free PRR
(reviewed in [15,126]), and a role for the replication checkpoint
in promoting the formation of template switch intermediates has
been reported [64]. The potential substrates of the replication
and damage checkpoint relevant for template switching are
numerous. For instance, Rad55 is required to stabilize the Rad51
filament and for strand-invasion activity (reviewed in [18]) and
is phosphorylated by the Rad53 checkpoint kinase [127]; however,
deficiency in Rad55 phosphorylation has no obvious effect in facil-
itating template switching [67]. A factor promoting efficient dam-
age-induced template switching as well as faulty template
switching at inverted repeats is the Exo1 nuclease [67,128]. Check-
point-mediated phosphorylation of Exo1 [129] inhibits Exo1-
mediated degradation of replication fork associated intermediates
[130]. The high level of inverted repeat fusions occurring in rad53
cells, but not in mec1, appeared to be reversed by introduction of
an exo1 mutation, suggesting that failure to restrict Exo1 activity
may facilitate faulty template switching between nearby inverted
repeats [128].

In fission yeast, phosphorylation of Rad9 of the 9-1-1 check-
point complex by the ATM and ATR-related checkpoint kinase,
Rad3, at Thr225, is enhanced by DNA damage and functions to di-
rect repair through a Pli1 (Siz1)-mediated sumoylation pathway
into the error-free branch of PRR; the mechanism likely involves
a physical interaction between Rad9 and Mms2 [131]. Although a
direct role for 9-1-1 and the Rad9–T225 phosphorylation in tem-
plate switching has not been yet addressed, this is a likely possibil-
ity considering that in budding yeast Siz1-dependent sumoylation
is required for Rad18–Mms2 pathway to promote gap-filling by
means of SCJs [42]. Furthermore, similar to Srs2 and PCNA–SUMO
in budding yeast [95,96], the Thr225 phosphorylation of Rad9 was
shown to prevent inappropriate Rad51-dependent recombination
[131]. The nature of these inappropriate recombination events pre-
vented by Siz1/Pli1 SUMO ligase, PCNA–SUMO and Srs2 are not
known, but they were speculated to be related to the ones promot-
ing SCJ formation in budding yeast but occurring independently of
Rad18–Rad5–Mms2 activities [42]. Whether similar to the fission
yeast situation, the Rad18 error-free pathway in other eukaryotes
is controlled by checkpoint-mediated phosphorylation events is
not known. Considering that human Rad18 was reported as a
potential ATR-ATM target [132], and that MMS-induced accumula-
tion of human Rad18 at stalled/damaged forks is affected by wort-
mannin treatment, an inhibitor of S-phase checkpoint kinases
[133], this becomes an intriguing possibility. Human Rad18 was re-
cently found to be phosphorylated by the Dbf4–Cdc7 kinase (DDK)
in response to DNA damage; this modification promotes recruit-
ment of a TLS polymerase, Polg, to sites of fork stalling but its
impact on other DDR events is not yet known [134].

Recently the Rad18–Rad5 error free pathway was elegantly
demonstrated to provide for error-free lesion tolerance when the
expression of such key factors is restricted to G2/M [40]. This find-
ing compellingly suggests that Rad18–Rad5 primarily promotes
damage tolerance behind replication forks rather than acting at
the fork (Fig. 1). The time has now come ripe to ask new questions.
Is template switching showing cell-cycle-related characteristics?
Are there differences between S and G2 phases of the cell cycle
in what regards factors availability and DDT efficiency? These
characteristics may relate to the expression or stability of certain
proteins, competition for factors in coincident processes (such as
Pold in template switching behind the fork and bulk DNA replica-
tion [67]) as well as to chromatin features that may affect the
accessibility of DDR factors. It is expected that the answer to these
questions will prove very informative for understanding the regu-
lation of this intricate process.

Considering that ssDNA is a substrate for different types of DDT
mechanisms and DNA metabolism processes, such as checkpoint
activation, Rad51 presynaptic filament formation, specialized poly-
merases whose activity largely depends on PCNA modifications,
and Rad18–Rad5 mediated template switching, it is likely that a
complex interplay of regulatory pathways and their substrate
modifications act to modulate these choices. Rad18 was shown
to interact with RPA bound to ssDNA [109]. In mammalian cells
RPA is kept in a hypoSUMOylated state during S phase through
an interaction with a SUMO-specific protease, SENP6; however
following DNA damage induced by camptothecin (CPT), which
induces topological, replicational stress and DSB formation, RPA
becomes sumoylated and this facilitates Rad51-mediated repair
through homologous recombination [135]. Is this modification of
RPA specific to HR-repair of DSBs? How would this modification
affect the Rad18–Rad5–Ubc13 role in DSB repair? And if it is not
specific to DSBs, how would sumoylated RPA affect the functional-
ity of the Rad18-mediated error-free damage tolerance? The inter-
play between SUMO and ubiquitin-mediated responses with
checkpoint and cyclin dependent kinase-mediated events begins
to be appreciated in the DSB repair field (reviewed in [13]), but
much remains to be learnt about the potential cross-talk of these
regulatory pathways in template switching.
8. Concluding remarks

Template switching has evolved as an important mechanism to
promote fork restart, gap-filling and damage bypass. In what
regards damage tolerance mechanisms, template switching con-
tributes largely to error-free bypass and opposes the undesirable
effects associated with mutagenesis. However, genomic architec-
tural features such as repeat elements induce fork stalling and
facilitate faulty template switching that results in genomic rear-
rangements. Although these events are often associated with geno-
mic instability and cancer development, they also play an
important role in long-term evolutionary changes in the genome
[2,30]. Furthermore, template-switching events associated with
rearrangements may be relevant for physiological processes, such
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as generating antibody diversity, and in development [136]. Thus,
it will be exciting to learn more about the mechanisms controlling
template switching events in distinct cellular settings, such as
germ line versus somatic cells, stem and cancer cells versus
differentiated cells. Finally, understanding how different post-
translational modifications such as those involving ubiquitin
chains facilitate recruitment of DDR factors and modulate the
organization and landscape of the genome, are fascinating topics
not only in the mutagenesis and cancer fields but also for
chromosome biology in general.
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