37 research outputs found

    Amplification Dynamics of Platy-1 Retrotransposons in the Cebidae Platyrrhine Lineage

    Get PDF
    Platy-1 elements are Platyrrhine-specific, short interspersed elements originally discovered in the Callithrix jacchus (common marmoset) genome. To date, only the marmoset genome has been analyzed for Platy-1 repeat content. Here, we report full-length Platy-1 insertions in other New World monkey (NWM) genomes (Saimiri boliviensis, squirrel monkey; Cebus imitator, capuchin monkey; and Aotus nancymaae, owl monkey) and analyze the amplification dynamics of lineage-specific Platy-1 insertions. A relatively small number of full-length and lineage-specific Platy-1 elements were found in the squirrel, capuchin, and owl monkey genomes compared with the marmoset genome. In addition, only a few older Platy-1 subfamilies were recovered in this study, with no Platy-1 subfamilies younger than Platy-1-6. By contrast, 62 Platy-1 subfamilies were discovered in the marmoset genome. All of the lineage-specific insertions found in the squirrel and capuchin monkeys were fixed present. However, similar to 15% of the lineage-specific Platy-1 loci in Aotus were polymorphic for insertion presence/absence. In addition, two new Platy-1 subfamilies were identified in the owl monkey genome with low nucleotide divergences compared with their respective consensus sequences, suggesting minimal ongoing retrotransposition in the Aotus genus and no current activity in the Saimiri, Cebus, and Sapajus genera. These comparative analyses highlight the finding that the high number of Platy-1 elements discovered in the marmoset genome is an exception among NWM analyzed thus far, rather than the rule. Future studies are needed to expand upon our knowledge of Platy-1 amplification in other NWM genomes

    Amplification dynamics of platy-1 retrotransposons in the cebidae platyrrhine lineage

    Get PDF
    © 2019 The Author(s). Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. Platy-1 elements are Platyrrhine-specific, short interspersed elements originally discovered in the Callithrix jacchus (common marmoset) genome. To date,only themarmoset genomehas been analyzed for Platy-1 repeat content.Here,we report full-length Platy-1 insertions in other NewWorld monkey (NWM) genomes (Saimiri boliviensis, squirrel monkey; Cebus imitator, capuchin monkey; and Aotus nancymaae, owl monkey) and analyze the amplification dynamics of lineage-specific Platy-1 insertions. A relatively small number of full-length and lineage-specific Platy-1 elements were found in the squirrel, capuchin, and owl monkey genomes compared with the marmoset genome. In addition, only a few older Platy-1 subfamilies were recovered in this study, with no Platy-1 subfamilies younger than Platy-1-6. By contrast, 62 Platy-1 subfamilieswere discovered in themarmoset genome.All of the lineagespecific insertions found in the squirrel and capuchin monkeys were fixed present. However, 15%of the lineage-specific Platy-1 loci in Aotus were polymorphic for insertion presence/absence. In addition, two new Platy-1 subfamilies were identified in the owl monkey genome with low nucleotide divergences compared with their respective consensus sequences, suggesting minimal ongoing retrotransposition in the Aotus genus and no current activity in the Saimiri, Cebus, and Sapajus genera. These comparative analyses highlight the finding that the high number of Platy-1 elements discovered in themarmoset genome is an exception among NWManalyzed thus far, rather than the rule. Future studies are needed to expand upon our knowledge of Platy-1 amplification in other NWM genomes

    Estimating cumulative pathway effects on risk for age-related macular degeneration using mixed linear models

    Get PDF
    BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly in developed countries and typically affects more than 10 % of individuals over age 80. AMD has a large genetic component, with heritability estimated to be between 45 % and 70 %. Numerous variants have been identified and implicate various molecular mechanisms and pathways for AMD pathogenesis but those variants only explain a portion of AMD’s heritability. The goal of our study was to estimate the cumulative genetic contribution of common variants on AMD risk for multiple pathways related to the etiology of AMD, including angiogenesis, antioxidant activity, apoptotic signaling, complement activation, inflammatory response, response to nicotine, oxidative phosphorylation, and the tricarboxylic acid cycle. While these mechanisms have been associated with AMD in literature, the overall extent of the contribution to AMD risk for each is unknown. METHODS: In a case–control dataset with 1,813 individuals genotyped for over 600,000 SNPs we used Genome-wide Complex Trait Analysis (GCTA) to estimate the proportion of AMD risk explained by SNPs in genes associated with each pathway. SNPs within a 50 kb region flanking each gene were also assessed, as well as more distant, putatively regulatory SNPs, based on DNaseI hypersensitivity data from ocular tissue in the ENCODE project. RESULTS: We found that 19 previously associated AMD risk SNPs contributed to 13.3 % of the risk for AMD in our dataset, while the remaining genotyped SNPs contributed to 36.7 % of AMD risk. Adjusting for the 19 risk SNPs, the complement activation and inflammatory response pathways still explained a statistically significant proportion of additional risk for AMD (9.8 % and 17.9 %, respectively), with other pathways showing no significant effects (0.3 % – 4.4 %). DISCUSSION: Our results show that SNPs associated with complement activation and inflammation significantly contribute to AMD risk, separately from the risk explained by the 19 known risk SNPs. We found that SNPs within 50 kb regions flanking genes explained additional risk beyond genic SNPs, suggesting a potential regulatory role, but that more distant SNPs explained less than 0.5 % additional risk for each pathway. CONCLUSIONS: From these analyses we find that the impact of complement SNPs on risk for AMD extends beyond the established genome-wide significant SNPs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0760-4) contains supplementary material, which is available to authorized users

    Differential In Vitro Effects of Intravenous versus Oral Formulations of Silibinin on the HCV Life Cycle and Inflammation

    Get PDF
    Silymarin prevents liver disease in many experimental rodent models, and is the most popular botanical medicine consumed by patients with hepatitis C. Silibinin is a major component of silymarin, consisting of the flavonolignans silybin A and silybin B, which are insoluble in aqueous solution. A chemically modified and soluble version of silibinin, SIL, has been shown to potently reduce hepatitis C virus (HCV) RNA levels in vivo when administered intravenously. Silymarin and silibinin inhibit HCV infection in cell culture by targeting multiple steps in the virus lifecycle. We tested the hepatoprotective profiles of SIL and silibinin in assays that measure antiviral and anti-inflammatory functions. Both mixtures inhibited fusion of HCV pseudoparticles (HCVpp) with fluorescent liposomes in a dose-dependent fashion. SIL inhibited 5 clinical genotype 1b isolates of NS5B RNA dependent RNA polymerase (RdRp) activity better than silibinin, with IC50 values of 40–85 µM. The enhanced activity of SIL may have been in part due to inhibition of NS5B binding to RNA templates. However, inhibition of the RdRps by both mixtures plateaued at 43–73%, suggesting that the products are poor overall inhibitors of RdRp. Silibinin did not inhibit HCV replication in subgenomic genotype 1b or 2a replicon cell lines, but it did inhibit JFH-1 infection. In contrast, SIL inhibited 1b but not 2a subgenomic replicons and also inhibited JFH-1 infection. Both mixtures inhibited production of progeny virus particles. Silibinin but not SIL inhibited NF-κB- and IFN-B-dependent transcription in Huh7 cells. However, both mixtures inhibited T cell proliferation to similar degrees. These data underscore the differences and similarities between the intravenous and oral formulations of silibinin, which could influence the clinical effects of this mixture on patients with chronic liver diseases

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    Alkoxyamine Polymers: Versatile Materials for Surface Ligation Applications

    Get PDF
    Immobilization of biomolecules (i.e., proteins, carbohydrates), on polymeric surfaces has been an area of intense research. The resultant bioconjugates often display increased stability, bioavailability and activity. Our research program seeks to explore the utility of the alkoxyamine (RONH2) functional group in new materials as versatile ligating sites for the immobilization of various compounds. The ease with which alkoxyamines (RONH2) condense with aldehydes or ketones has prompted their widespread use in labelling liposome, bacterial and mammalian cell surfaces as well as chemoselectively ligating small molecule ‘recognition elements\u27 onto polyfunctional substrates. These condensation reactions proceed in aqueous media to afford the robust oxime ethers in near quantitative yields, making these conjugations ideal for a variety of applications. Thus, alkoxyamines are excellent ‘molecular anchors\u27 to immobilize aldehyde/ketone compounds on a surface. We have installed alkoxyamines on polymer surfaces to tether a variety of compounds through the covalent oxime ether bond to the polymer backbone. Our synthetic efforts towards these novel alkoxyamine polymers as well as initial aldehyde/ketone immobilization studies will be discussed

    Cariporide Prodrugs: Targeting Brain Cancer Cells through Sodium-Proton Exchange Inhibition

    Get PDF
    More than 200,000 people in the United States are diagnosed with a primary or metastatic brain tumor annually. The life expectancy for these individuals is approximately 9-12 months from the time of diagnosis. This poor prognosis is due to the ineffectiveness of existing therapies (i.e., chemotherapy and radiotherapy) against brain cancer, where the primary problem is the inability to differentiate cancer cells from healthy brain cells. Relative to healthy brain tissue, the heightened metabolism of cancer cells increases their reliance on the ion transport proteins NHE (sodium-proton exchanger) and NCX (sodium-calcium exchanger). Inhibition of these proteins disrupts the intricate pH and ion balances within cancer cells to a much greater extent than in normal cells, and this leads to cancer cell death. In contrast, healthy brain cells are less affected by this targeted approach because they are far less reliant on NHE and NCX due to their normal (and lower) metabolic activity. Consequently, NHE and NCX are excellent molecular targets for a new, selective brain cancer therapy. Although potent NHE/NCX inhibitors are available, a fundamental impediment to the field is the delivery of these compounds to poorly vascularized tissues. As part of our target-specific approach to treating brain cancer, we have synthesized analogs of cariporide, a potent (e.g., nanomolar IC50 activity) NHE inhibitor, to address the drug delivery challenge. The preparation and biological activities of our cariporide analogs will be discusse
    corecore