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Abstract

Background: Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly
in developed countries and typically affects more than 10 % of individuals over age 80. AMD has a large genetic
component, with heritability estimated to be between 45 % and 70 %. Numerous variants have been identified and
implicate various molecular mechanisms and pathways for AMD pathogenesis but those variants only explain a
portion of AMD’s heritability. The goal of our study was to estimate the cumulative genetic contribution of
common variants on AMD risk for multiple pathways related to the etiology of AMD, including angiogenesis,
antioxidant activity, apoptotic signaling, complement activation, inflammatory response, response to nicotine,
oxidative phosphorylation, and the tricarboxylic acid cycle. While these mechanisms have been associated with
AMD in literature, the overall extent of the contribution to AMD risk for each is unknown.

Methods: In a case–control dataset with 1,813 individuals genotyped for over 600,000 SNPs we used Genome-wide
Complex Trait Analysis (GCTA) to estimate the proportion of AMD risk explained by SNPs in genes associated with
each pathway. SNPs within a 50 kb region flanking each gene were also assessed, as well as more distant,
putatively regulatory SNPs, based on DNaseI hypersensitivity data from ocular tissue in the ENCODE project.

Results: We found that 19 previously associated AMD risk SNPs contributed to 13.3 % of the risk for AMD in our dataset,
while the remaining genotyped SNPs contributed to 36.7 % of AMD risk. Adjusting for the 19 risk SNPs, the complement
activation and inflammatory response pathways still explained a statistically significant proportion of additional risk for
AMD (9.8 % and 17.9 %, respectively), with other pathways showing no significant effects (0.3 % – 4.4 %).

Discussion: Our results show that SNPs associated with complement activation and inflammation significantly
contribute to AMD risk, separately from the risk explained by the 19 known risk SNPs. We found that SNPs within 50 kb
regions flanking genes explained additional risk beyond genic SNPs, suggesting a potential regulatory role,
but that more distant SNPs explained less than 0.5 % additional risk for each pathway.

Conclusions: From these analyses we find that the impact of complement SNPs on risk for AMD extends
beyond the established genome-wide significant SNPs.

Keywords: Age-related macular degeneration (AMD), Heritability, Pathway analysis, Mixed linear model (MLM),
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Background
In developed countries the number one cause of irre-
versible visual loss in the elderly is age-related macular
degeneration (AMD) [1, 2]. AMD is a progressive neuro-
degenerative disease leading to loss of central vision
through dysfunction or death of photoreceptors in the
macula. This loss of vision often impacts quality of life,
depending on the severity and speed of disease progres-
sion in a given individual, with geographic atrophy (GA;
an advanced form of non-neovascular or “dry” AMD)
typically progressing much more slowly and with less
severe symptoms than choroidal neovascularization
(CNV; neovascular “wet” AMD). Because the average
age of most populations is increasing, the prevalence of
AMD is also expected to increase worldwide to approxi-
mately 196 million by 2020 [2].
AMD has long been known to have a genetic compo-

nent [3]; a twin study found that 46 % to 71 % of the
variation in the overall severity of AMD was explained
by additive genetic effects [4]. Variation in the Comple-
ment Factor H (CFH) gene, was associated with AMD
in 2005 [5–7], and several loci have since been associ-
ated [8]. Certain genetic variants contribute more to
risk for one subtype of AMD than another—for
example, CFH risk alleles are preferentially associated
with risk for GA and ARMS2 risk alleles are preferen-
tially associated with risk for CNV [8–10]. Additionally,
AMD prevalence differs by ethnic background, with
European-descent individuals having higher prevalence
rates than African-decent, Asian-descent, and Hispanic
individuals [2]. Many advancements have been made
toward understanding AMD pathogenesis, yet it is far
from being fully elucidated. No cure for AMD exists
and most treatment methods aim to prevent or slow
disease progression [11].
Multiple mechanisms have been proposed as having a

role in AMD pathogenesis. A recent review of AMD by
Fritsche et al. describes many risk factors and mecha-
nisms [11]. The discovery of the association between the
Complement Factor H gene and AMD led to further
associations between other genes related to complement
activation [12]. Inflammation is highly related to com-
plement activation, and can lead to apoptosis of retinal
pigment epithelial (RPE) cells and photoreceptors [13].
Apoptosis is thought to be more deeply associated with
AMD; using terminal deoxynucleotidyl transferase dUTP
nick end-labeling (TUNEL), Dunaief et al. found that
RPE cells, photoreceptors, and inner nuclear layer cells
can die through apoptosis during AMD progression
[14]. The Age-Related Eye Disease Study (AREDS)
showed that antioxidant vitamin supplements were able
to slow AMD progression [15], implicating antioxidant
mechanisms as candidates in disease progression. These
include intermediates of the tricarboxylic acid cycle

(TCA cycle), which can alter the effectiveness of zeaxan-
thin (a component of AREDS2 supplements) [16]. Zhao
and Vollrath showed that when mitochondria in RPE
were ablated in mice, the lack of oxidative phosphoryl-
ation (OxPhos) in the RPE led to photoreceptor
degeneration [17]. Angiogenesis is known to play a
significant role in choroidal neovascularization (CNV),
and anti-VEGF treatments, which aim to inhibit angio-
genesis, are used as treatment for wet AMD [18]. Finally,
smoking is a well-known risk factor for AMD [19], and
thus nicotine metabolism may plausibly play a role in
AMD pathogenesis. While there is substantial evidence
that complement activation plays a major role in AMD,
the genetic mechanisms involved in other mechanisms
are less established.
Genetic variants with large effect sizes, several of which

are localized to complement system genes, have been
repeatedly associated with AMD [5, 6, 8, 12, 20]. However,
AMD-associated SNPs that reach genome-wide signifi-
cance only account for a portion of the known heritability
[8]. SNPs with smaller effects likely contribute cumula-
tively to an additional portion of the heritability. While
overall heritability estimates of AMD are known, the esti-
mated contribution to heritability, separately, for many
AMD-related pathways is unknown. Existing genetic
pathway analysis methods typically annotate SNP associa-
tions using databases such as the Gene Ontology (GO)
[21], Ingenuity Pathway Analysis (IPA) [22], the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [23], or
Reactome [24]. These methods then utilize analytical
approaches, such as Gene Relationships Across Implicated
Loci (GRAIL), Gene Set Analysis (GSA), and Pathway
Analysis by Randomization Incorporating Structure
(PARIS), to determine the significance of pathways, usu-
ally using gene or SNP p-values or genotype data to
calculate a rank-based pathway statistic [25]. These
methods, however, do not provide a scaled measure of the
effect and thus do not offer estimates of heritability or the
proportion of overall disease risk explained by an entire
pathway. In this study, using a case–control AMD cohort,
we estimate the significance and proportion of risk
explained by additive genetic effects within specific AMD-
related pathways in order to prioritize them for future
molecular and epidemiological studies.

Methods
Dataset summary
Subjects in this study (Table 1) were recruited from the
Duke University Eye Center (DUEC), the Vanderbilt Eye
Institute (VEI), and the Bascom Palmer Eye Institute
(BPEI) at the University of Miami Miller School of
Medicine starting in 1995, 1999, and 2007, respectively.
Individuals were recruited through retinal clinics, mostly
via referrals for possible AMD; recruitment was performed
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under research protocols approved by the Duke
University School of Medicine Institutional Review
Board, the Vanderbilt University Institutional Review
Board, and the University of Miami Institutional
Review Boards, and written informed consent was
obtained from all participants. Original recruitment
was performed for a previous study of AMD [26] and
permission to use the dataset for this study was
obtained. Controls were recruited either as friends or
spouses of cases or through regular eye exams. Exam-
ination, imaging, and grading were performed prior to
the start of this analysis. All subjects were examined
by a retina specialist using slit-lamp biomicroscopy
and dilated fundus examination, including indirect
ophthalmoscopy. Additionally, fundus imaging was an-
alyzed to confirm case status. For consistency between
sites, images were scored by a retina specialist using a
modified grading system based on the Age-Related
Eye Disease Study (AREDS) [27]. The grading system
was used to score individuals on a scale between 1 and
5. Subjects with grades 1 and 2 were considered
controls and subjects with grades 3 through 5 were
considered cases, with grade 3 representing early
AMD (non-neovascular) and grades 4 and 5 represent-
ing late AMD (GA and CNV, respectively). Both eyes
were scored and an individual’s overall grade was
determined using the eye with the higher grade.

Genotyping and quality control
Three genotyping platforms were used: the Affymetrix
1M array (906,600 SNPs), a custom Sequenom array
(84 SNPs), and custom TaqMan assays (4 SNPs). The
Sequenom array was designed to interrogate potential
AMD-related SNPs, while the TaqMan assays were used
later to validate SNPs that performed poorly on the
Sequenom array. SNP quality control (QC) was per-
formed separately for Affymetrix SNPs and for merged
Sequenom/TaqMan SNPs and was applied simultan-
eously to cases and controls. For the Affymetrix geno-
typing chip, 38,443 non-autosomal SNPs were removed,
102,735 SNPs with genotyping efficiency < 95 % were

removed, 104,695 SNPs with a minor allele frequency
(MAF) < 1 % were removed, 1,475 SNPs with Hardy-
Weinberg Equilibrium (HWE) p-values < 1 × 10−6 were
removed, 121 SNPs not able to be converted from
genome build 36 to 37 using liftOver [28] were removed,
and 25 Affymetrix SNPs that were present in post-QC
Sequenom/TaqMan SNPs were removed, resulting in
659,106 post-QC Affymetrix SNPs. QC procedures were
applied to 88 merged Sequenom/TaqMan SNPs for 1,911
individuals that also had Affymetrix data. Forty-five
individuals were removed that had genotyping effi-
ciency < 90 %, leaving 1,866 individuals. For the
merged data, 4 non-autosomal SNPs were removed,
no SNPs had a genotyping efficiency < 95 %, 7 SNPs
with a MAF < 1 % were removed, and 2 SNPs with a
HWE p-value < 1 × 10−6 were removed, leaving 75
SNPs for analysis. All merged genotype platforms re-
sulted in a total of 659,181 SNPs for analysis.
All 1,967 individuals in our dataset were observer-

reported to be white (European American), however we
performed principal components analysis using 71 an-
cestry informative markers, seeding with six distinct
HapMap phase 3, release 3 populations [29], to confirm
genetic ancestry (Additional file 1: Figure S1). Twelve in-
dividuals with non-European American genetic ancestry
were removed to avoid potential confounding by popula-
tion stratification, including eleven with African American
genetic ancestry and one with Asian genetic ancestry
(Additional file 1: Figure S1). Additionally, five individ-
uals were removed that had genotyping efficiency less
than 90 %, based on Affymetrix genotype data, 84 indi-
viduals were removed that did not have available
Sequenom/TaqMan genotype data, and 53 individuals
were removed that did not have age recorded at time of
examination, leaving 1,813 individuals for analysis
(1,145 cases and 668 controls). Finally, some of our ana-
lyses required individuals to have known smoking status,
with individuals considered to be smokers if they had
smoked 100 or more cigarettes in their life; 455 individ-
uals did not have available smoking status information,
leaving 1,358 individuals for smoking status adjusted
analyses (Table 1). The distribution of age was similar
between cases and controls (Additional file 1: Figure S2).

Pathway selection and curation
For this study our goal was to determine the overall
contribution of several pathways on AMD risk, to both
confirm the importance of known mechanisms (e.g.
complement activation) and to determine if some
biological mechanisms contribute to cumulative AMD
risk without harboring individual genome-wide signifi-
cant, large-effect genetic variants. Based on an exten-
sive literature search (as summarized in the third
paragraph of the background section) and advice from

Table 1 Study population characteristics

Cohort Agea (SD) Males (%) Smokers (%)

Primary subset - 1,813 (100 %) 75.1 (8.4) 713 (39.3) —

Cases - 1,145 (63.2 %) 77.6 (7.9) 415 (36.2) —

Controls - 668 (36.8 %) 70.9 (7.7) 298 (44.6) —

Smoking subset - 1,358 (100 %) 75.0 (8.2) 560 (41.2) 790 (58.2)

Cases - 850 (62.6 %) 77.3 (7.7) 323 (38.0) 516 (60.7)

Controls - 508 (37.4 %) 71.2 (7.6) 237 (46.7) 274 (53.9)
aMean age in years
Primary cohort contains all individuals after QC measures were applied
Smoking subset cohort excludes individuals with unknown smoking status
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AMD experts, we chose eight mechanisms ranging
from having plausible to extremely well-known AMD
relation to test as pathways (Table 2) in our analysis.
The Gene Ontology (GO) [21] is a database of hier-

archical gene relationships. To objectively determine
genes related to each of the eight selected pathways
we selected appropriate GO terms corresponding to
each pathway and (Table 2) extracted all associated
genes (Additional file 2) falling under the hierarchy of
that GO term using the November 2013 release of
the GO database. Because GO is hierarchical, contain-
ing parent–child-type relationships, we included all
descendants of the selected GO terms so as to not
omit directly related genes. For each assigned gene,
we tested three partitioned regions to represent the
effect of that gene (Additional file 1: Figure S3), in-
cluding (1) SNPs within Ensembl-defined gene bound-
aries, (2) SNPs within 50 kb flanking each gene
boundary (to capture cis-regulatory SNPs), and (3)
SNPs within 50 kb and 250 kb flanking each gene
that also lie within open chromatin regions based on
ENCODE DNaseI hypersensitivity analyses from hu-
man retinal pigment epithelial cells (hRPEpiC) [30].

Mixed linear model analysis
To estimate the proportion of AMD risk explained by
each pathway, we used Genome-wide Complex Trait
Analysis (GCTA) [31] to fit genetic relationship matrices
(GRMs) in mixed linear models (MLMs) via the
restricted maximum likelihood (REML) method. GRMs
contain information about the genetic relationship (by
additive genetic effects) between all pairs of individuals
in a dataset, and can be calculated separately for differ-
ent combinations or subsets of SNPs. GCTA performs
likelihood ratio tests (LRTs), comparing full and reduced
models to determine the significance of a given genetic
variance component, where the reduced model is
created by dropping the genetic variance component
(GRM of interest) from the full model. Whereas with
continuous, quantitative traits, the proportion of pheno-
typic variance explained (PVE) by specified SNPs is

estimated, for case–control studies a liability threshold
model is implemented to estimate the proportion of risk
explained (PRE).
For many analyses we tested three different REML

algorithms—average information (AI), Fisher-scoring,
and expectation maximization (EM); here, we will only
show results using the EM algorithm, which was compu-
tationally slower but provided slightly more reliable
model fitting. For all analyses we included age, sex, and
the first two principal components as covariates. For
case–control analyses, GCTA by default uses disease
prevalence rates observed within a dataset; however, it is
recommended to use prevalence rates from general pop-
ulations based on literature. We used a prevalence rate
(Additional file 1: Table S1) of 5.07 %, calculated by
weighting all individuals in our dataset with U.S. preva-
lence rates, stratified by age [32]. The proportion of risk
explained is then transformed from the observed scale
to the specified prevalence scale. Linkage disequilibrium
(LD) has a minimal effect on estimates from GCTA,
with studies showing that cumulative estimates are
stable and not necessarily over-inflated because both in-
fluential and non-influential SNPs in LD are considered
and therefore possible confounding effects are neutral-
ized [33, 34]. To explore potential LD effects within our
study, we perform additional analyses on SNP sets
pruned using LD.
We estimated the overall proportion of risk for AMD

explained, as well as the proportion of risk explained by
each pathway for various gene regions and exclusion
criteria (Additional file 1: Figure S3). We explored ef-
fects of LD, SNP overlap between pathways, smoking
status, and stratification by AMD subtype on the pro-
portion of AMD risk explained, either cumulatively or
by pathway. Again, all analyses were adjusted for age,
sex, and the first two principal components, using an
adjusted prevalence rate of 5.07 %. The following are
more detailed methods for each specific analysis.

Genome-wide AMD risk explained
The first analysis we performed was to assess the
overall proportion of AMD risk explained by all avail-
able genotyped SNPs in our dataset (often referred to
as “chip heritability”). One GRM was created for all
659,181 SNPs and was included in a mixed linear
model analysis using GCTA, adjusting for the covari-
ates described previously.

Known risk SNPs
A recent meta-analysis [8] of AMD describes 19 genome-
wide significant AMD risk SNPs (Additional file 1:
Table S2). To determine the effect that those 19 known
SNPs have in our dataset we created a GRM consisting of
just those 19 SNPs, referred to as the risk GRM, and a

Table 2 Gene ontology terms used to define pathways

GO Term GO ID # Genes Reference

Angiogenesis GO:0001525 379 PMID: 23642783

Antioxidant activity GO:0016209 69 PMID: 23645227

Apoptotic signaling GO:0097190 1,635 PMID: 12427055

Complement activation GO:0006956 187 PMID: 20711704

Inflammatory response GO:0006954 534 PMID: 17021323

Response to nicotine GO:0035094 31 PMID: 8827967

Oxidative phosphorylation GO:0006119 78 PMID: 21483039

Tricarboxylic acid cycle GO:0006099 33 PMID: 14962143
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GRM for all other SNPs (659,162), referred to here as the
remainder GRM. Additionally, we created risk GRMs that
included 5 kb and 50 kb flanking (and including) the 19
known risk SNPs, resulting in a total of 83 and 566 risk
SNPs, respectively, with the remainder GRM being all
SNPs minus the given risk subset.

Risk explained by pathways
To estimate the effect of the eight selected AMD-
related pathways, two GRMs were generated, unless
otherwise specified, for each analysis of each pathway.
Pathway GRMs consist of SNPs being assessed for a re-
spective pathway and remainder GRMs contain all
other SNPs being considered that are not in the re-
spective pathway GRM and that are not excluded.
Many pathways have overlapping genes and thus effects
from all pathways could not be estimated in a single
mixed linear model. We assessed the effect for several
gene regions (Additional file 1: Figure S3), starting with
just genic SNPs, then subsequently adding SNPs within
50 kb flanking each gene, and then SNPs in open chro-
matin regions within 50 kb to 250 kb flanking each
gene, based on the ENCODE DNaseI hypersensitivity data
from human retinal pigment epithelial cells (hRPEpiC).
Additionally, for each pathway we performed analyses
excluding 5 kb risk regions around and encompassing
each of the 19 known risk SNPs from the regions includ-
ing genic SNPs, SNPs within 50 kb flanking, and more
distant SNPs in open chromatin regions. When known
risk regions were excluded from a pathway GRM, they
were not included in the remainder GRM but were rather
excluded entirely, so as to determine cumulative, add-
itional risk explained by pathways. Finally, we calculated
the risk explained for each pathway adjusting for the num-
ber of SNPs in each pathway to ensure that the amount of
risk explained was not simply due to the number of SNPs
included in a given pathway.

Gene overlap
For this study it was not feasible to allow all pathways
to have unique, non-overlapping gene sets. Thus, we
tested the overlap between all pairs of pathways to de-
termine whether risk explained was unique to certain
pathways or shared between pathways due to sharing
of common genes. For each overlapping pathway we
created a GRM using overlapping SNPs and a GRM
using non-overlapping SNPs, based on genic SNPs and
50 kb flanking.

Linkage disequilibrium near known risk SNPs
While we assessed excluding risk SNPs and 5 kb flank-
ing those risk SNPs from each pathway, SNPs in more
distant LD with those risk SNPs could influence the
calculation of pathway GRMs and inflate estimates of

the proportion of risk explained. Thus, we used LD in-
formation from CEPH individuals in HapMap phase II
to exclude all SNPs in LD with the 19 known risk
SNPs. We used exclusion criteria of R2 ≥ 0.10, 0.05,
and 0.01, much more strict than the typically used R2

cutoff of ≥ 0.80, therefore removing SNPs with even
minimal LD to known risk SNPs. Each SNP had LD
information for other SNPs within a 500 kb flanking
region. To be even more conservative we also ex-
cluded 1 MB regions flanking each risk SNP. For each
threshold we created a remainder GRM for all SNPs
minus any matching the exclusion criteria. Results
were compared to previous estimates of AMD risk
explained by known risk SNPs and all other geno-
typed SNPs to estimate risk explained due to LD near
risk SNPs. Each analysis included a risk GRM and a
remainder GRM.

Effect of smoking status
Smoking is a major risk factor for the development of
AMD [35], so we also ran additional analyses for each
pathway, including smoking status as a covariate, to
detect any differences in significance or amount of risk
explained per pathway, when adjusting for smoking.
Genic SNPs plus 50 kb flanking were used to compare
effects. Of the 1,813 individuals used in this study 455
did not have available smoking status.

Stratification by AMD subtype
We ran analyses stratifying by AMD subtype to con-
firm that our dataset exhibits no AMD-subtype effect,
especially considering that some pathways analyzed
are by definition more related to a particular AMD
subtype (e.g. angiogenesis is highly related to neovas-
cular AMD). For these analyses we excluded individ-
uals with early AMD (grade 3) and considered only
controls versus grade 4 (CNV) and controls versus
grade 5 (CNV in at least one eye). We tested genic
SNPs plus 50 kb flanking plus open chromatin for
both subtypes of AMD for each pathway.

Results and Discussion
Genome-wide AMD risk explained
In our first analysis we used all 659,181 genotyped SNPs
that passed QC to estimate the heritability of AMD in
our dataset. We found that 61.5 % (p-value = 3.4 × 10−5;
S.E. = 16.9 %) of the risk for AMD in our dataset was
explained by those SNPs, in range of known AMD herit-
ability estimates. This confirmatory step helps validate
subsequent pathway analyses in this study, showing that
there is substantial variation in our dataset that impacts
AMD risk. When assessed separately, the 19 previously
associated AMD risk SNPs explained 13.30 % of the risk
for AMD in our dataset (p = 1.35 × 10−61) while other
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genotyped SNPs explained 36.72 % of the risk. Regions
flanking the risk SNPs were also considered in separate
analyses and explained a total of 15.37 % (p = 1.59−53)
when 5 kb flanking the risk SNPs were included, and
16.33 % (p = 8.24−44) when 50 kb flanking regions were
included. From this we see that known risk SNPs explain
only a portion of the overall risk estimate, indicating that
additional lower-effect SNPs may influence disease risk.

Risk explained by pathways
We first assessed the effect of each pathway for three
different gene region inclusion criteria without excluding
any known risk SNPs (Fig. 1). The complement and in-
flammatory pathways explained between approximately
10 % (p < 1 × 10−25) and 17 % (p < 1 × 10−7), respectively,
of the risk for AMD, while the angiogenesis and apop-
totic signaling pathways explained nearly 5 % of the risk
(non-significant), and the antioxidant, nicotine, oxidative
phosphorylation, and tricarboxylic acid cycle pathways
explained approximately 2 % of the risk or less (non-sig-
nificant). In general, we observed that inclusion of SNPs
within 50 kb flanking pathway genes typically increased
the amount of risk explained, while additional inclusion
of more distant SNPs in open chromatin regions did not
explain a great deal more risk, suggesting that local
regulatory SNPs indeed modulate risk.
We also assessed each pathway, excluding known risk

SNPs and 5 kb flanking (referred to as risk regions) from
regions including genic SNPs plus 50 kb flanking plus
open chromatin SNPs, to better estimate novel risk
explained by each pathway (Fig. 1, green bars). We ob-
served very little reduction in the amount of risk explained

by each pathway when the risk regions were removed.
The response to nicotine, oxidative phosphorylation, and
tricarboxylic acid cycle pathways contained no SNPs
within risk regions, while other pathways contained at
most 10 SNPs within risk regions to be removed, indicat-
ing that risk explained by each pathway is in addition to
the amount of risk explained by the 19 known risk SNPs.
Notably, the number of genes and SNPs differs signifi-

cantly over the pathways we targeted. When we adjusted
the proportion of risk explained from each pathway by
the number of SNPs contained within each pathway, we
observed results consistent with known genetic contrib-
utors to AMD (Fig. 2). Unsurprisingly, after adjusting
for the number of SNPs in each pathway, the comple-
ment pathway explains the highest amount of risk per
SNP. The antioxidant, nicotine, and oxidative phosphor-
ylation pathways, which each explain less 2 % of the risk
for AMD, have similar levels of per-SNP effects (about
0.02 %), on the same order of magnitude as the comple-
ment pathway (0.05 %) and inflammatory pathway
(0.03 %). Overall, we see very little cumulative effect of
SNPs outside the complement and inflammatory path-
ways, but identify additional risk from complement and
inflammatory mechanisms, due in part to variation
within the flanking regions of these genes that is likely
to be regulatory.

Gene overlap
The pathways we selected to study for association to
AMD risk were not all completely unrelated. For example,
inflammation, apoptotic signaling, and angiogenesis are all
biologically related and also have SNP overlap between
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pathways (Additional file 1: Figure S4). We estimated the
proportion of risk explained due to SNPs overlapping be-
tween pathways for each pathway pair where overlap was
present and found that the overlap between most pathway
pairs accounted for between 0.07 % and 2.21 % of the risk
for AMD explained (Fig. 3). The SNPs overlapping be-
tween the complement and inflammatory pathways, how-
ever, explained 9.59 % of the risk for AMD; taking a closer
look at SNPs shared provides a better understanding of
the risk explained by the two pathways (Fig. 4). Of the
1,343 SNPs in the complement pathway, 955 were also in

the inflammatory pathway. The 15,038 SNPs unique to
the inflammatory pathway, however, only explained 2.9 %
of the risk for AMD—a non-statistically significant
amount. From this we observe that while the inflamma-
tory pathway, at first glance, appears to explain more risk
than the complement pathway, in reality, a large amount
of the risk, but not all, is due to genes shared between the
complement activation pathway.

Linkage disequilibrium near known risk SNPs
In order to ensure that SNPs near the 19 known risk
SNPs (Additional file 1: Table S2) were not overinflating
estimates of risk explained, we used LD information
around the risk SNPs to exclude SNPs in LD and meas-
ure any changes in overall, genome-wide estimates of
AMD risk explained (Additional file 1: Table S3). As
mentioned previously, the 19 risk SNPs alone explained
13.3 % of risk for AMD while all other SNPs (included
in a remainder GRM) explained 36.7 % of the risk for
AMD. Exclusion of SNPs using the threshold of R2 ≥ 0.01
only reduced the risk explained by 1.6 %, to 35.1 %. In an
even more conservative case, we excluded 1 MB flanking
each side of the risk SNPs, regardless of LD, resulting in a
reduction in risk explained of 5.4 %, to 31.3 %—unsur-
prising given the number of total SNPs excluded.
Based on this we can assume that LD between risk
SNPs and pathways SNPs would not confound esti-
mates of AMD risk explained.

Effect of smoking status
Smoking is a major risk factor for AMD; therefore, we
assessed the impact of smoking status as a covariate in a
sub-analysis of these data in samples where smoking
status was available. After adjusting for smoking, the
proportion of risk explained by each pathway did not
change considerably (Additional file 1: Figure S6). In
fact, after adjustment, the angiogenesis, complement,
and inflammatory pathways actually explained slightly
more risk for AMD. All pathways exhibited little change
and we conclude that adjusting for smoking status does
not modulate the cumulative effect of SNPs within any
of the targeted pathways.

Stratification by AMD subtype
Finally, we compared the effects on AMD risk, stratified
by AMD subtype, for all pathways (Additional file 1:
Figure S7). There were 668 controls, 1,145 total AMD
cases, 113 cases with GA (grade 4; advanced dry AMD),
667 cases with CNV (grade 5 in at least one eye; wet
AMD, and 365 cases with grade 3 or an unrecorded grade.
We hypothesized that, because of the strong biological
correlation between wet AMD and the angiogenesis path-
way, a significant proportion of risk explained by the
angiogenesis pathway would be observed when comparing
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CNV cases to controls. However that was not the case; we
observe slightly more risk explained by the angiogenesis
pathway (and most other pathways) when comparing
cases with GA to controls. We observe an unusual peak of
risk explained by the apoptosis pathway when comparing
GA versus controls, which is intriguing given possible
associations with GA and apoptosis in literature. However,
this signal may be an artifact of the more limited power
within our GA subset.

Conclusions
In our analyses, we both confirm existing knowledge of
AMD genetics and provide new, additional information
on putative disease-associated pathways influencing risk
for AMD. Our results show that SNPs in genes (and
within 50 kb flanking) associated with complement
activation and inflammation significantly contribute to
AMD risk, separately from the risk explained by 19
known risk SNPs. We note, however, that the comple-
ment and inflammatory pathways are not discrete; we
found that a large proportion of risk explained by the
inflammatory pathway is due to overlap with comple-
ment activation genes. Other mechanisms thought to be
involved in AMD pathogenesis do not appear to greatly
influence disease risk through the cumulative action of
common genetic variants. We also observe that while
smoking is a known risk factor for AMD, inclusion as a
model covariate does not significantly affect risk esti-
mates from pathways. Overall, we show genes that inter-
play between the complement and inflammatory
pathways explain additional risk, apart from the known,
large-effect AMD risk SNPs, and that some portion of

these are localized to the 50 kb flanking regions, indicat-
ing a regulatory role. As such, further targeted genomic
or molecular studies may wish to prioritize additional
loci within the complement pathway over other pro-
posed disease mechanisms.

Availability of supporting data
Data used in this study is being deposited into dbGaP.
Please contact the corresponding author to request
supporting data.
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provides additional figures and tables not included in the paper,
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details of calculating expected population prevalence rate, information on
the 19 known risk SNPs, analyses of linkage disequilibrium effects, and
pathway SNP counts. (DOCX 766 kb)

Additional file 2: Pathway Gene Lists. This Excel file contains lists of
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