49 research outputs found

    Metric connections in projective differential geometry

    Full text link
    We search for Riemannian metrics whose Levi-Civita connection belongs to a given projective class. Following Sinjukov and Mikes, we show that such metrics correspond precisely to suitably positive solutions of a certain projectively invariant finite-type linear system of partial differential equations. Prolonging this system, we may reformulate these equations as defining covariant constant sections of a certain vector bundle with connection. This vector bundle and its connection are derived from the Cartan connection of the underlying projective structure.Comment: 10 page

    Explicit formulas for GJMS-operators and QQ-curvatures

    Full text link
    We describe GJMS-operators as linear combinations of compositions of natural second-order differential operators. These are defined in terms of Poincar\'e-Einstein metrics and renormalized volume coefficients. As special cases, we find explicit formulas for conformally covariant third and fourth powers of the Laplacian. Moreover, we prove related formulas for all Branson's QQ-curvatures. The results settle and refine conjectural statements in earlier works. The proofs rest on the theory of residue families.Comment: 84 pages, revised argument in proof of Theorem 3.1, corrected typo

    Boundary dynamics and multiple reflection expansion for Robin boundary conditions

    Get PDF
    In the presence of a boundary interaction, Neumann boundary conditions should be modified to contain a function S of the boundary fields: (\nabla_N +S)\phi =0. Information on quantum boundary dynamics is then encoded in the SS-dependent part of the effective action. In the present paper we extend the multiple reflection expansion method to the Robin boundary conditions mentioned above, and calculate the heat kernel and the effective action (i) for constant S, (ii) to the order S^2 with an arbitrary number of tangential derivatives. Some applications to symmetry breaking effects, tachyon condensation and brane world are briefly discussed.Comment: latex, 22 pages, no figure

    Positive mass theorem for the Paneitz-Branson operator

    Get PDF
    We prove that under suitable assumptions, the constant term in the Green function of the Paneitz-Branson operator on a compact Riemannian manifold (M,g)(M,g) is positive unless (M,g)(M,g) is conformally diffeomophic to the standard sphere. The proof is inspired by the positive mass theorem on spin manifolds by Ammann-Humbert.Comment: 7 page

    Zeta function determinant of the Laplace operator on the DD-dimensional ball

    Get PDF
    We present a direct approach for the calculation of functional determinants of the Laplace operator on balls. Dirichlet and Robin boundary conditions are considered. Using this approach, formulas for any value of the dimension, DD, of the ball, can be obtained quite easily. Explicit results are presented here for dimensions D=2,3,4,5D=2,3,4,5 and 66.Comment: 22 pages, one figure appended as uuencoded postscript fil

    Spectral action for torsion with and without boundaries

    Full text link
    We derive a commutative spectral triple and study the spectral action for a rather general geometric setting which includes the (skew-symmetric) torsion and the chiral bag conditions on the boundary. The spectral action splits into bulk and boundary parts. In the bulk, we clarify certain issues of the previous calculations, show that many terms in fact cancel out, and demonstrate that this cancellation is a result of the chiral symmetry of spectral action. On the boundary, we calculate several leading terms in the expansion of spectral action in four dimensions for vanishing chiral parameter θ\theta of the boundary conditions, and show that θ=0\theta=0 is a critical point of the action in any dimension and at all orders of the expansion.Comment: 16 pages, references adde

    Twistor geometry of a pair of second order ODEs

    Full text link
    We discuss the twistor correspondence between path geometries in three dimensions with vanishing Wilczynski invariants and anti-self-dual conformal structures of signature (2,2)(2, 2). We show how to reconstruct a system of ODEs with vanishing invariants for a given conformal structure, highlighting the Ricci-flat case in particular. Using this framework, we give a new derivation of the Wilczynski invariants for a system of ODEs whose solution space is endowed with a conformal structure. We explain how to reconstruct the conformal structure directly from the integral curves, and present new examples of systems of ODEs with point symmetry algebra of dimension four and greater which give rise to anti--self--dual structures with conformal symmetry algebra of the same dimension. Some of these examples are (2,2)(2, 2) analogues of plane wave space--times in General Relativity. Finally we discuss a variational principle for twistor curves arising from the Finsler structures with scalar flag curvature.Comment: Final version to appear in the Communications in Mathematical Physics. The procedure of recovering a system of torsion-fee ODEs from the heavenly equation has been clarified. The proof of Prop 7.1 has been expanded. Dedicated to Mike Eastwood on the occasion of his 60th birthda

    One-Loop Amplitudes in Euclidean Quantum Gravity

    Full text link
    This paper studies the linearized gravitational field in the presence of boundaries. For this purpose, ζ\zeta-function regularization is used to perform the mode-by-mode evaluation of BRST-invariant Faddeev-Popov amplitudes in the case of flat Euclidean four-space bounded by a three-sphere. On choosing the de Donder gauge-averaging term, the resulting ζ(0)\zeta(0) value is found to agree with the space-time covariant calculation of the same amplitudes, which relies on the recently corrected geometric formulas for the asymptotic heat kernel in the case of mixed boundary conditions. Two sets of mixed boundary conditions for Euclidean quantum gravity are then compared in detail. The analysis proves that one cannot restrict the path-integral measure to transverse-traceless perturbations. By contrast, gauge-invariant amplitudes are only obtained on considering from the beginning all perturbative modes of the gravitational field, jointly with ghost modes.Comment: 26 pages, plain TeX, no figure

    Renormalization of the asymptotically expanded Yang-Mills spectral action

    Get PDF
    We study renormalizability aspects of the spectral action for the Yang-Mills system on a flat 4-dimensional background manifold, focusing on its asymptotic expansion. Interpreting the latter as a higher-derivative gauge theory, a power-counting argument shows that it is superrenormalizable. We determine the counterterms at one-loop using zeta function regularization in a background field gauge and establish their gauge invariance. Consequently, the corresponding field theory can be renormalized by a simple shift of the spectral function appearing in the spectral action. This manuscript provides more details than the shorter companion paper, where we have used a (formal) quantum action principle to arrive at gauge invariance of the counterterms. Here, we give in addition an explicit expression for the gauge propagator and compare to recent results in the literature.Comment: 28 pages; revised version. To appear in CMP. arXiv admin note: substantial text overlap with arXiv:1101.480
    corecore