57 research outputs found
FLT3 mutations in Early T-Cell Precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL) with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68) in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%). Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-), a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3) and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements). The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%). To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup
Distinct immune evasion in APOBECâenriched, HPVânegative HNSCC
Immune checkpoint inhibition leads to response in some patients with head and neck squamous cell carcinoma (HNSCC). Robust biomarkers are lacking to date. We analyzed viral status, gene expression signatures, mutational load and mutational signatures in whole exome and RNA-sequencing data of the HNSCC TCGA dataset (n = 496) and a validation set (DKTK MASTER cohort, n = 10). Public single-cell gene expression data from 17 HPV-negative HNSCC were separately reanalyzed. APOBEC3-associated TCW motif mutations but not total single nucleotide variant burden were significantly associated with inflammation. This association was restricted to HPV-negative HNSCC samples. An APOBEC-enriched, HPV-negative subgroup was identified, that showed higher T-cell inflammation and immune checkpoint expression, as well as expression of APOBEC3 genes. Mutations in immune-evasion pathways were also enriched in these tumors. Analysis of single-cell sequencing data identified expression of APOBEC3B and 3C genes in malignant cells. We identified an APOBEC-enriched subgroup of HPV-negative HNSCC with a distinct immunogenic phenotype, potentially mediating response to immunotherapy
Feasibility of Azacitidine Added to Standard Chemotherapy in Older Patients with Acute Myeloid Leukemia â A Randomised SAL Pilot Study
Introduction: Older patients with acute myeloid leukemia (AML) experience short survival despite intensive chemotherapy. Azacitidine has promising activity in patients with low proliferating AML. The aim of this dose-finding part of this trial was to evaluate feasibility and safety of azacitidine combined with a cytarabine- and daunorubicin-based chemotherapy in older patients with AML.
Trial Design: Prospective, randomised, open, phase II trial with parallel group design and fixed sample size.
Patients and Methods: Patients aged 61 years or older, with untreated acute myeloid leukemia with a leukocyte count of ,20,000/ml at the time of study entry and adequate organ function were eligible. Patients were randomised to receive azacitidine either 37.5 (dose level 1) or 75 mg/sqm (dose level 2) for five days before each cycle of induction (7+3 cytarabine plus daunorubicine) and consolidation (intermediate-dose cytarabine) therapy. Dose-limiting toxicity was the primary endpoint.
Results: Six patients each were randomised into each dose level and evaluable for analysis. No dose-limiting toxicity occurred in either dose level. Nine serious adverse events occurred in five patients (three in the 37.5 mg, two in the 75 mg arm) with two fatal outcomes. Two patients at the 37.5 mg/sqm dose level and four patients at the 75 mg/sqm level achieved a complete remission after induction therapy. Median overall survival was 266 days and median event-free survival 215 days after a median follow up of 616 days.
Conclusions: The combination of azacitidine 75 mg/sqm with standard induction therapy is feasible in older patients with AML and was selected as an investigational arm in the randomised controlled part of this phase-II study, which is currently halted due to an increased cardiac toxicity observed in the experimental arm.
Trial Registration: This trial is registered at clinical trials.gov (identifier: NCT00915252)
Sorafenib or placebo in patients with newly diagnosed acute myeloid leukaemia: long-term follow-up of the randomized controlled SORAML trial
Abstract
Early results of the randomized placebo-controlled SORAML trial showed that, in patients with newly diagnosed acute myeloid leukaemia (AML), sorafenib led to a significant improvement in event-free (EFS) and relapse-free survival (RFS). In order to describe second-line treatments and their implications on overall survival (OS), we performed a study after a median follow-up time of 78 months. Newly diagnosed fit AML patients aged â€60 years received sorafenib (nâ=â134) or placebo (nâ=â133) in addition to standard chemotherapy and as maintenance treatment. The 5-year EFS was 41 versus 27% (HR 0.68; pâ=â0.011) and 5-year RFS was 53 versus 36% (HR 0.64; pâ=â0.035). Allogeneic stem cell transplantation (allo SCT) was performed in 88% of the relapsed patients. Four years after salvage allo SCT, the cumulative incidence of relapse was 54 versus 35%, and OS was 32 versus 50%. The 5-year OS from randomization in all study patients was 61 versus 53% (HR 0.82; pâ=â0.282). In conclusion, the addition of sorafenib to chemotherapy led to a significant prolongation of EFS and RFS. Although the OS benefit did not reach statistical significance, these results confirm the antileukaemic activity of sorafenib
Innovating the outreach of comprehensive cancer centers
In many countries, a majority of cancer patients are not treated at comprehensive cancer centers. Even for those that are, parts of the treatment or followâup may be carried out in local community hospitals or in private practices. How to assure quality in cancer care and create innovation? How to integrate decentralized versus centralized patient care, education, and cancer research? Outlined here is a 360° view of outreach to include all stakeholdersâmost importantly patients and their families, patient advocacy groups, healthcare providers, health insurers, and policymakers
Interferon-gamma impairs proliferation of hematopoietic stem cells in mice
Balancing the processes of hematopoietic stem cell (HSC) differentiation and self-renewal is critical for maintaining a lifelong supply of blood cells. The bone marrow (BM) produces a stable output of newly generated cells, but immunologic stress conditions inducing leukopenia increase the demand for peripheral blood cell supply. Here we demonstrate that the proinflammatory cytokine interferon-gamma (IFN-gamma) impairs maintenance of HSCs by directly reducing their proliferative capacity and that IFN-gamma impairs restoration of HSC numbers upon viral infection. We show that IFN-gamma reduces thrombopoietin (TPO)-mediated phosphorylation of signal transducer and activator of transcription (STAT) 5, an important positive regulator of HSC self-renewal. IFN-gamma also induced expression of suppressor of cytokine signaling (SOCS) 1 in HSCs, and we demonstrate that SOCS1 expression is sufficient to inhibit TPO-induced STAT5 phosphorylation. Furthermore, IFN-gamma deregulates expression of STAT5-mediated cell-cycle genes cyclin D1 and p57. These findings suggest that IFN-gamma is a negative modulator of HSC self-renewal by modifying cytokine responses and expression of genes involved in HSC proliferation. We postulate that the occurrence of BM failure in chronic inflammatory conditions, such as aplastic anemia, HIV, and graft-versus-host disease, is related to a sustained impairment of HSC self-renewal caused by chronic IFN-gamma signaling in these disorder
Protein Kinase C-Mediated Phosphorylation of the Leukemia-Associated HOXA9 Protein Impairs Its DNA Binding Ability and Induces Myeloid Differentiation
HOXA9 expression is a common feature of acute myeloid leukemia, and high-level expression is correlated with poor prognosis. Moreover, HOXA9 overexpression immortalizes murine marrow progenitors that are arrested at a promyelocytic stage of differentiation when cultured and causes leukemia in recipient mice following transplantation of HOXA9 expressing bone marrow. The molecular mechanisms underlying the physiologic functions and transforming properties of HOXA9 are poorly understood. This study demonstrates that HOXA9 is phosphorylated by protein kinase C (PKC) and casein kinase II and that PKC mediates phosphorylation of purified HOXA9 on S204 as well as on T205, within a highly conserved consensus sequence, in the N-terminal region of the homeodomain. S204 in the endogenous HOXA9 protein was phosphorylated in PLB985 myeloid cells, as well as in HOXA9-immortalized murine marrow cells. This phosphorylation was enhanced by phorbol ester, a known inducer of PKC, and was inhibited by a specific PKC inhibitor. PKC-mediated phosphorylation of S204 decreased HOXA9 DNA binding affinity in vitro and the ability of the endogenous HOXA9 to form cooperative DNA binding complexes with PBX. PKC inhibition significantly reduced the phorbol-ester induced differentiation of the PLB985 hematopoietic cell line as well as HOXA9-immortalized murine bone marrow cells. These data suggest that phorbol ester-induced myeloid differentiation is in part due to PKC-mediated phosphorylation of HOXA9, which decreases the DNA binding of the homeoprotein
Acute kidney injury adversely affects the clinical course of acute myeloid leukemia patients undergoing induction chemotherapy
Acute kidney injury (AKI) complicates the clinical course of hospitalized patients by increasing need for intensive care treatment and mortality. There is only little data about its impact on AML patients undergoing intensive induction chemotherapy. In this study, we analyzed the incidence as well as risk factors for AKI development and its impact on the clinical course of AML patients undergoing induction chemotherapy. We retrospectively analyzed data from 401 AML patients undergoing induction chemotherapy between 2007 and 2019. AKI was defined and stratified according to KIDGO criteria by referring to a defined baseline serum creatinine measured on day 1 of induction chemotherapy. Seventy-two of 401 (18%) AML patients suffered from AKI during induction chemotherapy. AML patients with AKI had more days with fever (7 vs. 5, p = 0.028) and were more often treated on intensive care unit (45.8% vs. 10.6%, p < 0.001). AML patients with AKI had a significantly lower complete remission rate after induction chemotherapy and, with 402 days, a significantly shorter median overall survival (OS) (median OS for AML patients without AKI not reached). In this study, we demonstrate that the KIDGO classification allows mortality risk stratification for AML patients undergoing induction chemotherapy. Relatively mild AKI episodes have impact on the clinical course of these patients and can lead to chronic impairment of kidney function. Therefore, we recommend incorporating risk factors for AKI in decision-making considering nutrition, fluid management, as well as the choice of potentially nephrotoxic medication in order to decrease the incidence of AKI
Reducing the red blood cell transfusion threshold from 8·0 g/dl to 7·0 g/dl in acute myeloid leukaemia patients undergoing induction chemotherapy reduces transfusion rates without adversely affecting patient outcome
Background and Objectives: Red blood cell (RBC) transfusions are needed by almost every acute myeloid leukaemia (AML) patient undergoing induction chemotherapy and constitute a cornerstone in supportive measures for cancer patients in general. Randomized controlled trials have shown nonâinferiority or even superiority of restrictive transfusion guidelines over liberal transfusion guidelines in specific clinical situations outside of medical oncology. In this study, we analysed whether more restrictive RBC transfusion reduces blood use without affecting hard outcomes.
Materials and Methods: A total of 352 AML patients diagnosed between 2007 and 2018 and undergoing intensive induction chemotherapy were included in this retrospective analysis. In the less restrictive transfusion group, patients received RBC transfusion for haemoglobin levels below 8 g/dl (2007â2014). In the restrictive transfusion group, patients received RBC transfusion for haemoglobin levels below 7 g/dl (2016â2018). Liberal transfusion triggers were never endorsed.
Results: A total of 268 (76·1%) and 84 (23·9%) AML patients fell into the less restrictive and restrictive transfusion groups, respectively. The less restrictive transfusion group had 1 g/dl higher mean haemoglobin levels, received their first RBC transfusions earlier and needed 1·5 more units of RBC during the hospital stay of induction chemotherapy. Febrile episodes, Câreactive protein levels, admission to the intensive care unit, length of hospital stay as well as response and survival rates did not differ between the two cohorts.
Conclusion: From our retrospective analysis, we conclude that a more restrictive transfusion trigger does not affect important outcomes of AML patients. The opportunity to test possible effects of the more severe anaemia in the restrictive transfusion group on quality of life was missed
- âŠ