23,667 research outputs found
Analytic Solution for the Critical State in Superconducting Elliptic Films
A thin superconductor platelet with elliptic shape in a perpendicular
magnetic field is considered. Using a method originally applied to circular
disks, we obtain an approximate analytic solution for the two-dimensional
critical state of this ellipse. In the limits of the circular disk and the long
strip this solution is exact, i.e. the current density is constant in the
region penetrated by flux. For ellipses with arbitrary axis ratio the obtained
current density is constant to typically 0.001, and the magnetic moment
deviates by less than 0.001 from the exact value. This analytic solution is
thus very accurate. In increasing applied magnetic field, the penetrating flux
fronts are approximately concentric ellipses whose axis ratio b/a < 1 decreases
and shrinks to zero when the flux front reaches the center, the long axis
staying finite in the fully penetrated state. Analytic expressions for these
axes, the sheet current, the magnetic moment, and the perpendicular magnetic
field are presented and discussed. This solution applies also to
superconductors with anisotropic critical current if the anisotropy has a
particular, rather realistic form.Comment: Revtex file and 13 postscript figures, gives 10 pages of text with
figures built i
Déjà vu and the entorhinal cortex: dissociating recollective from familiarity disruptions in a single case patient
Past research has demonstrated a relationship between déjà vu and the entorhinal cortex in patients with wider medial temporal lobe damage. The aim of the present research was to investigate this crucial link in a patient (MR) with a selective lesion to the left lateral entorhinal cortex to provide a more direct exploration of this relationship. Two experiments investigated the experiences of déjà vécu (using the IDEA questionnaire) and déjà vu (using an adapted DRM paradigm) in MR and a set of matched controls. The results demonstrated that MR had quantitatively more and qualitatively richer recollective experiences of déjà vécu. In addition, under laboratory-based déjà vu conditions designed to elicit both false recollection (critical lures) and false familiarity (weakly-associated lures), MR only revealed greater memory impairments for the latter. The present results are therefore the first to demonstrate a direct relationship between the entorhinal cortex and the experience of both déjà vu and déjà vécu. They furthermore suggest that the entorhinal cortex is involved in both weakly-associative false memory as well as strongly-associative memory under conditions that promote familiarity-based processing
Theory of Type-II Superconductors with Finite London Penetration Depth
Previous continuum theory of type-II superconductors of various shapes with
and without vortex pinning in an applied magnetic field and with transport
current, is generalized to account for a finite London penetration depth
lambda. This extension is particularly important at low inductions B, where the
transition to the Meissner state is now described correctly, and for films with
thickness comparable to or smaller than lambda. The finite width of the surface
layer with screening currents and the correct dc and ac responses in various
geometries follow naturally from an equation of motion for the current density
in which the integral kernel now accounts for finite lambda. New geometries
considered here are thick and thin strips with applied current, and `washers',
i.e. thin film squares with a slot and central hole as used for SQUIDs.Comment: 14 pages, including 15 high-resolution figure
The structure of the graviton self-energy at finite temperature
We study the graviton self-energy function in a general gauge, using a hard
thermal loop expansion which includes terms proportional to T^4, T^2 and
log(T). We verify explicitly the gauge independence of the leading T^4 term and
obtain a compact expression for the sub-leading T^2 contribution. It is shown
that the logarithmic term has the same structure as the ultraviolet pole part
of the T=0 self-energy function. We argue that the gauge-dependent part of the
T^2 contribution is effectively canceled in the dispersion relations of the
graviton plasma, and present the solutions of these equations.Comment: 27 pages, 6 figure
Critical State in Thin Anisotropic Superconductors of Arbitrary Shape
A thin flat superconductor of arbitrary shape and with arbitrary in-plane and
out-of-plane anisotropy of flux-line pinning is considered, in an external
magnetic field normal to its plane.
It is shown that the general three-dimensional critical state problem for
this superconductor reduces to the two-dimensional problem of an infinitely
thin sample of the same shape but with a modified induction dependence of the
critical sheet current. The methods of solving the latter problem are well
known. This finding thus enables one to study the critical states in realistic
samples of high-Tc superconductors with various types of anisotropic flux-line
pinning. As examples, we investigate the critical states of long strips and
rectangular platelets of high-Tc superconductors with pinning either by the
ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex
Equivalence of the Falicov-Kimball and Brandt-Mielsch forms for the free energy of the infinite-dimensional Falicov-Kimball model
Falicov and Kimball proposed a real-axis form for the free energy of the
Falicov-Kimball model that was modified for the coherent potential
approximation by Plischke. Brandt and Mielsch proposed an imaginary-axis form
for the free energy of the dynamical mean field theory solution of the
Falicov-Kimball model. It has long been known that these two formulae are
numerically equal to each other; an explicit derivation showing this
equivalence is presented here.Comment: 4 pages, 1 figure, typeset with ReVTe
Measuring the speed of the conscious components of recognition memory: Remembering is faster than knowing.
Three experiments investigated response times (RTs) for remember and know responses in recognition memory. RTs to remember responses were faster than RTs to know responses, regardless of whether the remember–know decision was preceded by an old/new decision (two-step procedure) or was made without a preceding old/new decision (one-step procedure). The finding of faster RTs for R responses was also found when remember–know decisions were made retrospectively. These findings are inconsistent with dual-process models of recognition memory, which predict that recollection is slower and more effortful than familiarity. Word frequency did not influence RTs, but remember responses were faster for words than for nonwords. We argue that the difference in RTs to remember and know responses reflects the time taken to make old/new decisions on the basis of the type of information activated at test
Behavior of logarithmic branch cuts in the self-energy of gluons at finite temperature
We give a simple argument for the cancellation of the log(-k^2) terms (k is
the gluon momentum) between the zero-temperature and the temperature-dependent
parts of the thermal self-energy.Comment: 4 page
Anomaly candidates and invariants of D=4, N=1 supergravity theories
All anomaly candidates and the form of the most general invariant local
action are given for old and new minimal supergravity, including the cases
where additional Yang--Mills and chiral matter multiplets are present.
Furthermore nonminimal supergravity is discussed. In this case local
supersymmetry itself may be anomalous and some of the corresponding anomaly
candidates are given explicitly. The results are obtained by solving the
descent equations which contain the consistency equation satisfied by
integrands of anomalies and invariant actions.Comment: 19 pages, LaTex, NIKHEF-H 93-12, ITP-UH 07/9
- …