92 research outputs found
Both male and female obese ZSF1 rats develop cardiac dysfunction in obesity-induced heart failure with preserved ejection fraction
Heart failure with a preserved ejection fraction (HFpEF) is associated with multiple comorbidities, such as old age, hypertension, type 2 diabetes and obesity and is more prevalent in females. Although the male obese ZSF1 rat has been proposed as a suitable model to study the development of diastolic dysfunction and early HFpEF, studies in female animals have not been performed yet. Therefore, we aimed to characterize the cardiac phenotype in female obese ZSF1 rats and their lean counterparts. Additionally, we aimed to investigate whether differences exist in disease progression in obese male and female ZSF1 rats. Therefore, male and female ZSF1 rats, lean as well as obese (N = 6-9/subgroup), were used. Every two weeks, from 12 to 26 weeks of age, systolic blood pressure and echocardiographic measurements were performed, and venous blood was sampled. Female obese ZSF1 rats, as compared to female lean ZSF1 rats, developed diastolic dysfunction with cardiac hypertrophy and fibrosis in the presence of severe dyslipidemia, increased plasma growth differentiation factor 15 and mild hypertension, and preservation of systolic function. Although obese female ZSF1 rats did not develop hyperglycemia, their diastolic dysfunction was as severe as in the obese males. Taken together, the results from the present study suggest that the female obese ZSF1 rat is a relevant animal model for HFpEF with multiple comorbidities, suitable for investigating novel therapeutic interventions
Matrix metalloproteinases and tissue inhibitors of metalloproteinases in extracellular matrix remodeling during left ventricular diastolic dysfunction and heart failure with preserved ejection fraction: A systematic review and meta-analysis
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are pivotal regulators of extracellular matrix (ECM) composition and could, due to their dynamic activity, function as prognostic tools for fibrosis and cardiac function in left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF). We conducted a systematic review on experimental animal models of LVDD and HFpEF published in MEDLINE or Embase. Twenty-three studies were included with a total of 36 comparisons that reported established LVDD, quantification of cardiac fibrosis and cardiac MMP or TIMP expression or activity. LVDD/HFpEF models were divided based on underlying pathology: hemodynamic overload (17 comparisons), metabolic alteration (16 comparisons) or ageing (3 comparisons). Meta-analysis showed that echocardiographic parameters were not consistently altered in LVDD/HFpEF with invasive hemodynamic measurements better representing LVDD. Increased myocardial fibrotic area indicated comparable characteristics between hemodynamic and metabolic models. Regarding MMPs and TIMPs; MMP2 and MMP9 activity and protein and TIMP1 protein levels were mainly enhanced in hemodynamic models. In most cases only mRNA was assessed and there were no correlations between cardiac tissue and plasma levels. Female gender, a known risk factor for LVDD and HFpEF, was underrepresented. Novel studies should detail relevant model characteristics and focus on MMP and TIMP protein expression and activity to identify predictive circulating markers in cardiac ECM remodeling
Limited synergy of obesity and hypertension, prevalent risk factors in onset and progression of heart failure with preserved ejection fraction
Obesity and hypertension are prevalent comorbidities in heart failure with preserved ejection fraction. To clarify if and how interaction between these comorbidities contributes to development of diastolic dysfunction, lean and obese ZSF1 rats were treated with deoxycorticosterone acetate implants and a high-salt diet (DS) to induce severe hypertension, or with placebo. In addition to echocardiographic, metabolic and hemodynamic analyses, immunohistochemistry and RNAseq were performed on left ventricular tissue. Obesity negatively affected cardiac output, led to an elevated E/e’ ratio and mildly reduced ejection fraction. DS-induced hypertension did not affect cardiac output and minimally elevated E/e’ ratio. Diastolic derangements in placebo-treated obese rats developed in absence of inflammation and fibrosis, yet in presence of oxidative stress and hypertrophic remodelling. In contrast, hypertension triggered apoptosis, inflammation and fibrosis, with limited synergy of the comorbidities observed for inflammation and fibrosis. Transcriptional data suggested that these comorbidities exerted opposite effects on mitochondrial function. In placebo-treated obese rats, genes involved in fatty acid metabolism were up-regulated, whereas DS-induced a down-regulation of genes involved in oxidative phosphorylation. Overall, limited interaction was observed between these comorbidities in development of diastolic dysfunction. Importantly, differences in obesity- and hypertension-induced cardiac remodelling emphasize the necessity for comorbidity-specific phenotypical characterization
Both male and female obese ZSF1 rats develop cardiac dysfunction in obesity-induced heart failure with preserved ejection fraction
Heart failure with a preserved ejection fraction (HFpEF) is associated with multiple comorbidities, such as old age, hypertension, type 2 diabetes and obesity and is more prevalent in females. Although the male obese ZSF1 rat has been proposed as a suitable model to study the development of diastolic dysfunction and early HFpEF, studies in female animals have not been performed yet. Therefore, we aimed to characterize the cardiac phenotype in female obese ZSF1 rats and their lean counterparts. Additionally, we aimed to investigate whether differences exist in disease progression in obese male and female ZSF1 rats. Therefore, male and female ZSF1 rats, lean as well as obese (N = 6-9/subgroup), were used. Every two weeks, from 12 to 26 weeks of age, systolic blood pressure and echocardiographic measurements were performed, and venous blood was sampled. Female obese ZSF1 rats, as compared to female lean ZSF1 rats, developed diastolic dysfunction with cardiac hypertrophy and fibrosis in the presence of severe dyslipidemia, increased plasma growth differentiation factor 15 and mild hypertension, and preservation of systolic function. Although obese female ZSF1 rats did not develop hyperglycemia, their diastolic dysfunction was as severe as in the obese males. Taken together, the results from the present study suggest that the female obese ZSF1 rat is a relevant animal model for HFpEF with multiple comorbidities, suitable for investigating novel therapeutic interventions
Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Extracellular Matrix Remodeling during Left Ventricular Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-Analysis
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are pivotal regulators of extracellular matrix (ECM) composition and could, due to their dynamic activity, function as prognostic tools for fibrosis and cardiac function in left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF). We conducted a systematic review on experimental animal models of LVDD and HFpEF published in MEDLINE or Embase. Twenty-three studies were included with a total of 36 comparisons that reported established LVDD, quantification of cardiac fibrosis and cardiac MMP or TIMP expression or activity. LVDD/HFpEF models were divided based on underlying pathology: hemodynamic overload (17 comparisons), metabolic alteration (16 comparisons) or ageing (3 comparisons). Meta-analysis showed that echocardiographic parameters were not consistently altered in LVDD/HFpEF with invasive hemodynamic measurements better representing LVDD. Increased myocardial fibrotic area indicated comparable characteristics between hemodynamic and metabolic models. Regarding MMPs and TIMPs; MMP2 and MMP9 activity and protein and TIMP1 protein levels were mainly enhanced in hemodynamic models. In most cases only mRNA was assessed and there were no correlations between cardiac tissue and plasma levels. Female gender, a known risk factor for LVDD and HFpEF, was underrepresented. Novel studies should detail relevant model characteristics and focus on MMP and TIMP protein expression and activity to identify predictive circulating markers in cardiac ECM remodeling
Transcriptome analysis reveals microvascular endothelial cell-dependent pericyte differentiation
Microvascular homeostasis is strictly regulated, requiring close interaction between endothelial cells and pericytes. Here, we aimed to improve our understanding of how microvascular crosstalk affects pericytes. Human-derived pericytes, cultured in absence, or presence of human endothelial cells, were studied by RNA sequencing. Compared with mono-cultured pericytes, a total of 6704 genes were differentially expressed in co-cultured pericytes. Direct endothelial contact induced transcriptome profiles associated with pericyte maturation, suppression of extracellular matrix production, proliferation, and morphological adaptation. In vitro studies confirmed enhanced pericyte proliferation mediated by endothelial-derived PDGFB and pericyte-derived HB-EGF and FGF2. Endothelial-induced PLXNA2 and ACTR3 upregulation also triggered pericyte morphological adaptation. Pathway analysis predicted a key role for TGFβ signaling in endothelial-induced pericyte differentiation, whereas the effect of signaling via gap- and adherens junctions was limited. We demonstrate that endothelial cells have a major impact on the transcriptional profile of pericytes, regulating endothelial-induced maturation, proliferation, and suppression of ECM production
MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway
Arteriogenesis is a complicated process induced by increased local shear-and radial wall-stress, leading to an increase in arterial diameter. This process is enhanced by growth factors secreted by both inflammatory and endothelial cells in response to physical stress. Although therapeutic promotion of arteriogenesis is of great interest for ischaemic diseases, little is known about the modulation of the signalling cascades via microRNAs. We observed that miR-132/212 expression was significantly upregulated after occlusion of the femoral artery. miR-132/212 knockout (KO) mice display a slower perfusion recovery after hind-limb ischaemia compared to wildtype (WT) mice. Immunohistochemical analysis demonstrates a clear trend towards smaller collateral arteries in KO mice. Although Ex vivo aortic ring assays score similar number of branches in miR-132/212 KO mice compared to WT, it can be stimulated with exogenous miR-132, a dominant member of the miR-132/212 family. Moreover, in in vitro pericyte-endothelial co-culture cell assays, overexpression of miR-132 and mir-212 in endothelial cells results in enhanced vascularization, as shown by an increase in tubular structures and junctions. Our results suggested that miR-132/212 may exert their effects by enhancing the Ras-Mitogen-activated protein kinases MAPK signalling pathway through direct inhibition of Rasa1, and Spred1. The miR-132/212 cluster promotes arteriogenesis by modulating Ras-MAPK signalling via direct targeting of its inhibitors Rasa1 and Spred1
Concomitant intraperitoneal and systemic chemotherapy for extensive peritoneal metastases of colorectal origin: protocol of the multicentre, open-label, phase I, dose-escalation INTERACT trial
INTRODUCTION: Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) has become standard of care for patients with peritoneal metastases of colorectal origin with a low/moderate abdominal disease load. In case of a peritoneal cancer index (PCI) score >20, CRS-HIPEC is not considered to be beneficial. Patients with a PCI >20 are currently offered palliative systemic chemotherapy. Previous studies have shown that systemic chemotherapy is less effective against peritoneal metastases than it is against haematogenous spread of colorectal cancer. It is suggested that patients with peritoneal metastases may benefit from the addition of intraperitoneal chemotherapy to systemic chemotherapy. Aim of this study is to establish the maximum tolerated dose of intraperitoneal irinotecan, added to standard of care systemic therapy for colorectal cancer. Secondary endpoints are to determine the safety and feasibility of this treatment and to establish the pharmacokinetic profile of intraperitoneally administered irinotecan. METHODS AND ANALYSIS: This phase I, '3+3' dose-escalation, study is performed in two Dutch tertiary referral centres. The study population consists of adult pa
An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)
- …