1,903 research outputs found

    Symmetry without Symmetry: Numerical Simulation of Axisymmetric Systems using Cartesian Grids

    Get PDF
    We present a new technique for the numerical simulation of axisymmetric systems. This technique avoids the coordinate singularities which often arise when cylindrical or polar-spherical coordinate finite difference grids are used, particularly in simulating tensor partial differential equations like those of 3+1 numerical relativity. For a system axisymmetric about the z axis, the basic idea is to use a 3-dimensional Cartesian (x,y,z) coordinate grid which covers (say) the y=0 plane, but is only one finite-difference-molecule--width thick in the y direction. The field variables in the central y=0 grid plane can be updated using normal (x,y,z)--coordinate finite differencing, while those in the y \neq 0 grid planes can be computed from those in the central plane by using the axisymmetry assumption and interpolation. We demonstrate the effectiveness of the approach on a set of fully nonlinear test computations in 3+1 numerical general relativity, involving both black holes and collapsing gravitational waves.Comment: 17 pages, 4 figure

    ECONOMIC IMPACTS RESULTING FROM CO-FIRING BIOMASS FEEDSTOCKS IN SOUTHEASTERN UNITED STATES COAL-FIRED PLANTS

    Get PDF
    Economic impacts of using biomass in Southeast United States coal-fired plants are estimated using a county-level biomass database; ORCED, a dynamic electricity distribution model that estimates feedstock value; ORIBAS, a GIS model that estimates feedstock transportation costs; and IMPLAN, an input-output model that determines the impacts of co-firing on economic activity.Resource /Energy Economics and Policy,

    X-ray Insights Into Interpreting CIV Blueshifts and Optical/UV Continua

    Full text link
    We present 0.5-8.0 keV Chandra observations of six bright quasars that represent extrema in quasar emission-line properties -- three quasars each with small and large blueshifts of the CIV emission line with respect to the systemic redshift of the quasars. Supplemented with seven archival Chandra observations of quasars that met our selection criteria, we investigate the origin of this emission-line phenomenon in the general context of the structure of quasars. We find that the quasars with the largest CIV blueshifts show evidence, from joint-spectral fitting, for intrinsic X-ray absorption (N_H ~ 10^22 cm^-2). Given the lack of accompanying CIV absorption, this gas is likely to be highly ionized, and may be identified with the shielding gas in the disk-wind paradigm. Furthermore, we find evidence for a correlation of alpha_uv, the ultraviolet spectral index, with the hardness of the X-ray continuum; an analysis of independent Bright Quasar Survey data from the literature supports this conclusion. This result points to intrinsically red quasars having systematically flatter hard X-ray continua without evidence for X-ray absorption. We speculate on the origins of these correlations of X-ray properties with both CIV blueshift and alpha_uv and discuss the implications for models of quasar structure.Comment: 9 figs, 25 pages, AASTeX; accepted for publication in A

    A Hard Look at NGC 5347: Revealing a Nearby Compton-thick AGN

    Get PDF
    Current measurements show that the observed fraction of Compton-thick (CT) active galactic nuclei (AGN) is smaller than the expected values needed to explain the cosmic X-ray background. Prior fits to the X-ray spectrum of the nearby Seyfert-2 galaxy NGC 5347 (z = 0.00792, D = 35.5 Mpc ) have alternately suggested a CT and Compton-thin source. Combining archival data from Suzaku, Chandra, and—most importantly—new data from NuSTAR, ... See full text for complete abstrac

    Interstitials, Vacancies, and Supersolid Order in Vortex Crystals

    Full text link
    Interstitials and vacancies in the Abrikosov phase of clean Type II superconductors are line imperfections, which cannot extend across macroscopic equilibrated samples at low temperatures. We argue that the entropy associated with line wandering nevertheless can cause these defects to proliferate at a sharp transition which will exist if this occurs below the temperature at which the crystal actually melts. Vortices are both entangled and crystalline in the resulting ``supersolid'' phase, which in a dual ``boson'' analog system is closely related to a two-dimensional quantum crystal of He4^4 with interstitials or vacancies in its ground state. The supersolid {\it must} occur for B≫B×B\gg B_\times, where B×B_\times is the decoupling field above which vortices begin to behave two-dimensionally. Numerical calculations show that interstitials, rather than vacancies, are the preferred defect for B≫ϕ0/λ⊥2B\gg \phi_0/\lambda_\perp^2, and allow us to estimate whether proliferation also occurs for B\,\lot\,B_\times.The implications of the supersolid phase for transport measurements, dislocation configurations and neutron diffraction are discussed.Comment: 53 pages and 15 figures, available upon request, written in plain TE

    Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure

    Full text link
    The standard inflationary version of the origin of the cosmic structure as the result of the quantum fluctuations during the early universe is less than fully satisfactory as has been argued in [A. Perez, H. Sahlmann, and D. Sudarsky, Class. Quantum Grav., 23, 2317, (2006)]. A proposal is made there of a way to address the shortcomings by invoking a process similar to the collapse of the quantum mechanical wave function of the various modes of the inflaton field. This in turn was inspired on the ideas of R. Penrose about the role that quantum gravity might play in bringing about such breakdown of the standard unitary evolution of quantum mechanics. In this paper we study in some detail the two schemes of collapse considered in the original work together with an alternative scheme, which can be considered as "more natural" than the former two. The new scheme, assumes that the collapse follows the correlations indicated in the Wigner functional of the initial state. We end with considerations regarding the degree to which the various schemes can be expected to produce a spectrum that resembles the observed one.Comment: 18 pages, 9 figure

    Phase separation due to quantum mechanical correlations

    Full text link
    Can phase separation be induced by strong electron correlations? We present a theorem that affirmatively answers this question in the Falicov-Kimball model away from half-filling, for any dimension. In the ground state the itinerant electrons are spatially separated from the classical particles.Comment: 4 pages, 1 figure. Note: text and figure unchanged, title was misspelle

    MicroProtein-mediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in Arabidopsis

    Get PDF
    MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two Arabidopsis thaliana microProteins, miP1a and miP1b, physically interact with CONSTANS (CO) a potent regulator of flowering time. The miP1a/b-type microProteins evolved in dicotyledonous plants and have an additional carboxy-terminal PF(V/L)FL motif. This motif enables miP1a/b microProteins to interact with TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins. Interaction of CO with miP1a/b/TPL causes late flowering due to a failure in the induction of FLOWERING LOCUS T (FT) expression under inductive long day conditions. Both miP1a and miP1b are expressed in vascular tissue, where CO and FT are active. Genetically, miP1a/b act upstream of CO thus our findings unravel a novel layer of flowering time regulation via microProtein-inhibition

    Exploratory Chandra Observations of the Three Highest Redshift Quasars Known

    Full text link
    We report on exploratory Chandra observations of the three highest redshift quasars known (z = 5.82, 5.99, and 6.28), all found in the Sloan Digital Sky Survey. These data, combined with a previous XMM-Newton observation of a z = 5.74 quasar, form a complete set of color-selected, z > 5.7 quasars. X-ray emission is detected from all of the quasars at levels that indicate that the X-ray to optical flux ratios of z ~ 6 optically selected quasars are similar to those of lower redshift quasars. The observations demonstrate that it will be feasible to obtain quality X-ray spectra of z ~ 6 quasars with current and future X-ray missions.Comment: 15 pages, ApJL, in press; small revisions to address referee Comment
    • …
    corecore