43 research outputs found

    Using microearthquakes to track repeated magma intrusions beneath the Eyjafjallajökull stratovolcano, Iceland

    Get PDF
    We have mapped microearthquakes caused by magma migration preceding and during the flank and summit eruptions in March–May 2010 of Eyjafjallajökull stratovolcano in Iceland using a Coalescence Microseismic Mapping technique. Spatial and temporal clustering of >5,000 microearthquakes under the eastern flank of the volcano illuminates several northeast–southwest striking sub-vertical dikes at 2–6 km b.s.l., emplaced before the Fimmvörðuháls flank eruption in March. This intense precursory seismicity had a lateral extent of ∼6 km east-west and ∼3 km north-south. A sequence of 386 microearthquakes during the summit eruption, refined by double-difference relative relocation, defines a sub-linear trend inclined ∼5–10° from vertical extending from the upper mantle at ∼30 km depth to the summit crater. This sequence includes two major clusters at ∼19 km and ∼24 km b.s.l., each containing >100 earthquakes. All microearthquakes display characteristics of brittle fracture, with several subsets of events exhibiting closely similar waveforms within clusters. This suggests similar, repetitive source processes. The deeper clusters may be caused by fracturing solidified magma plugs that form constrictions in an otherwise aseismic melt conduit. Or they may occur at exit points from melt pockets, in which case they indicate positions of magma storage at depth. The seismicity deeper than 10 km only starts three weeks after the onset of the summit eruption, after which the largest clusters occur at progressively greater depths. This temporal pattern may result from pressure release at shallow levels in the magmatic plumbing system progressively feeding down to mobilize deeper melt pockets

    Seismogenic magma intrusion before the 2010 eruption of Eyjafjallajökull volcano, Iceland

    Get PDF
    We present relatively relocated earthquake hypocentres for >1000 microearthquakes (ML < 3) that occurred during the 2 weeks immediately prior to the 2010 March 20 fissure eruption at Fimmvörðuháls on the flank of Eyjafjallajökull volcano in Iceland. Our hypocentre locations lie predominantly in horizontally separated clusters spread over an area of 10 km2 and approximately 4 km below sea level (5 km below the surface). Seismic activity in the final 4 d preceding the eruption extended to shallower levels <2 km below sea level and propagated to the surface at the Fimmvörðuháls eruption site on the day the eruption started. We demonstrate using synthetic data that the observed apparent ∼1 km vertical elongation of seismic clusters is predominantly an artefact caused by only small errors (0.01–0.02 s) in arrival time data. Where the signal-to-noise ratio was sufficiently good to make subsample arrival time picks by cross-correlation of both P- and S-wave arrivals, the mean depth of 103 events in an individual cluster were constrained to 3.84 ± 0.06 km. Epicentral locations are significantly less vulnerable to arrival time errors than are depths for the seismic monitoring network we used. Within clusters of typically 100 recorded earthquakes, most of the arrivals exhibit similar waveforms and identical patterns of P-wave first-motion polarities across the entire monitoring network. The clusters of similar events comprise repetitive sources in the same location with the same orientations of failure, probably on the same rupture plane. The epicentral clustering and similarity of source mechanisms suggest that much of the seismicity was generated at approximately static constrictions to magma flow in an inflating sill complex. These constrictions may act as a form of valve in the country rock, which ruptures when the melt pressure exceeds a critical level, then reseals after a pulse of melt has passed through. This would generate recurring similar source mechanisms on the same weak fault plane as the connection between segments of the sill system is repeatedly refractured in the same location. We infer that the magmatic intrusion causing most of the seismicity was likely to be a laterally inflating complex of sills at about 4 km depth, with seismogenic pinch-points occurring between aseismic compartments of the sills, or between adjacent magma lobes as they inflated. During the final 4 d preceding the eruption onset between 22:30 and 23:30 UTC on 2010 March 20, the seismicity suggests that melt progressed upwards to a depth of ∼2 km. This seismicity was probably caused by fracturing of the country rock at the margins of the propagating dyke. Subsequently, on the morning of the eruption a dyke propagated eastward from the region of precursory seismic activity to the Fimmvörðuháls eruption site

    Focal mechanisms and size distribution of earthquakes beneath the Krafla central volcano, NE Iceland.

    Get PDF
    Seismicity was monitored beneath the Krafla central volcano, NE Iceland, between 2009 and 2012 during a period of volcanic quiescence, when most earthquakes occurred within the shallow geothermal field. The highest concentration of earthquakes is located close to the rock-melt transition zone as the Iceland Deep Drilling Project-1 (IDDP-1) wellbore suggests and decays quickly at greater depths. We recorded multiple swarms of microearthquakes, which coincide often with periods of changes in geothermal field operations, and found that about one third of the total number of earthquakes are repeating events. The event size distribution, evaluated within the central caldera, indicates average crustal values with b = 0.79 ± 0.04. No significant spatial b value contrasts are resolved within the geothermal field nor in the vicinity of the drilled melt. Besides the seismicity analysis, focal mechanisms are calculated for 342 events. Most of these short-period events have source radiation patterns consistent with double-couple (DC) mechanisms. A few events are attributed to non-shear-faulting mechanisms with geothermal fluids likely playing an important role in their source processes. Diverse faulting styles are inferred from DC events, but normal faulting prevails in the central caldera. The best fitting compressional and tensional axes of DC mechanisms are interpreted in terms of the principal stress or deformation rate orientations across the plate boundary rift. Maximum compressive stress directions are near-vertically aligned in different study volumes, as expected in an extensional tectonic setting. Beneath the natural geothermal fields, the least compressive stress axis is found to align with the regional spreading direction. In the main geothermal field both horizontal stresses appear to have similar magnitudes causing a diversity of focal mechanisms

    Seismic amplitude ratio analysis of the Bárðarbunga-Holuhraun dike propagation and eruption

    Get PDF
    Magma is transported in brittle rock through dikes and sills. This movement may be accompanied by the release of seismic energy that can be tracked from the Earth's surface. Locating dikes and deciphering their dynamics is therefore of prime importance in understanding and potentially forecasting volcanic eruptions. The Seismic Amplitude Ratio Analysis (SARA) method aims to track melt propagation using the amplitudes recorded across a seismic network without picking the arrival times of individual earthquake phases. This study validates this methodology by comparing SARA locations (filtered between 2 and 16 Hz) with the earthquake locations (same frequency band) recorded during the 2014–2015 Bár urn:x-wiley:jgrb:media:jgrb52508:jgrb52508-math-0003arbunga‐Holuhraun dike intrusion and eruption in Iceland. Integrating both approaches also provides the opportunity to investigate the spatiotemporal characteristics of magma migration during the dike intrusion and ensuing eruption. During the intrusion SARA locations correspond remarkably well to the locations of earthquakes. Several exceptions are, however, observed. (1) A low‐frequency signal was possibly associated with a subglacial eruption on 23 August. (2) A systematic retreat of the seismicity was also observed to the back of each active segment during stalled phases and was associated with a larger spatial extent of the seismic energy source. This behavior may be controlled by the dike's shape and/or by dike inflation. (3) During the eruption SARA locations consistently focused at the eruptive site. (4) Tremor‐rich signal close to ice cauldrons occurred on 3 September. This study demonstrates the power of the SARA methodology, provided robust site amplification; Quality Factors and seismic velocities are available

    Integration of micro-gravity and geodetic data to constrain shallow system mass changes at Krafla Volcano, N Iceland

    Get PDF
    New and previously published micro-gravity data are combined with InSAR data, precise levelling and GPS measurements to produce a model for the processes operating at Krafla volcano, 20 years after its most recent eruption. The data have been divided into two periods: from 1990 to 1995 and from 1996 to 2003 and show that the rate of deflation at Krafla is decaying exponentially. The net micro-gravity change at the centre of the caldera is shown, using the measured Free Air Gradient, to be -85 μGal for the first and -100 μGal for the second period. After consideration of the effects of water extraction by the geothermal power station within the caldera, the net gravity decreases are -73 ± 17 μGal for the first and -65 ± 17 μGal for the second period. These decreases are interpreted in terms of magma drainage. Following a Mogi point source model we calculate the mass decrease to be ~2 x 1010 kg/yr reflecting a drainage rate of ~0.23 m3/s, similar to the ~0.13 m3/s drainage rate previously found at Askja volcano, N-Iceland. Based on the evidence for deeper magma reservoirs and the similarity between the two volcanic systems, we suggest a pressure-link between Askja and Krafla at deeper levels (at the lower crust or the crust-mantle boundary). After the Krafla fires, co-rifting pressure decrease of a deep source at Krafla stimulated the subsequent inflow of magma, eventually affecting conditions along the plate boundary in N-Iceland, as far away as Askja. We anticipate that the pressure of the deeper reservoir at Krafla will reach a critical value and eventually magma will rise from there to the shallow magma chamber, possibly initiating a new rifting episode. We have demonstrated that by examining micro-gravity and geodetic data, our knowledge of active volcanic systems can be significantly improved

    Unexpected large eruptions from buoyant magma bodies within viscoelastic crust

    Get PDF
    Large volume effusive eruptions with relatively minor observed precursory signals are at odds with widely used models to interpret volcano deformation. Here we propose a new modelling framework that resolves this discrepancy by accounting for magma buoyancy, viscoelastic crustal properties, and sustained magma channels. At low magma accumulation rates, the stability of deep magma bodies is governed by the magma-host rock density contrast and the magma body thickness. During eruptions, inelastic processes including magma mush erosion and thermal effects, can form a sustained channel that supports magma flow, driven by the pressure difference between the magma body and surface vents. At failure onset, it may be difficult to forecast the final eruption volume; pressure in a magma body may drop well below the lithostatic load, create under-pressure and initiate a caldera collapse, despite only modest precursors

    The May 29 2008 earthquake aftershock sequence within the South Iceland Seismic Zone: Fault locations and source parameters of aftershocks

    Get PDF
    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland

    Magma mobilization by downward-propagating decompression of the Eyjafjallajökull volcanic plumbing system

    Get PDF
    Detailed observations of the 2010 Eyjafjallajökull eruptions in Iceland show seismic activity propagating vertically through the entire crust during a ten-week period of volcanic unrest comprising multiple eruption episodes. Systematic changes in magma chemistry suggest a complex magmatic plumbing system, tapping several accumulation zones at different depths containing magma of differing ages and compositions. During the eruption, a systematic downward propagation of seismicity through the crust and into the upper mantle to ~30 km depth occurred in a series of steps, each of which preceded an explosive surge in eruption rate. Here we show that the sequence of seismicity and eruptive activity may be explained by the downward propagation of a decompression wave that triggers magma release from progressively deeper sills in the crust. Comparing observations of the downward-propagating seismicity with the decompression of a series of model elastic sills suggests that each sill was 1-10 km3 in size
    corecore