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Abstract Seismicity was monitored beneath the Krafla central volcano, NE Iceland, between 2009
and 2012 during a period of volcanic quiescence, when most earthquakes occurred within the shallow
geothermal field. The highest concentration of earthquakes is located close to the rock-melt transition zone
as the Iceland Deep Drilling Project-1 (IDDP-1) wellbore suggests and decays quickly at greater depths.
We recorded multiple swarms of microearthquakes, which coincide often with periods of changes in
geothermal field operations, and found that about one third of the total number of earthquakes are
repeating events. The event size distribution, evaluated within the central caldera, indicates average crustal
values with b = 0.79 ± 0.04. No significant spatial b value contrasts are resolved within the geothermal field
nor in the vicinity of the drilled melt. Besides the seismicity analysis, focal mechanisms are calculated for
342 events. Most of these short-period events have source radiation patterns consistent with double-couple
(DC) mechanisms. A few events are attributed to non-shear-faulting mechanisms with geothermal fluids
likely playing an important role in their source processes. Diverse faulting styles are inferred from DC events,
but normal faulting prevails in the central caldera. The best fitting compressional and tensional axes of DC
mechanisms are interpreted in terms of the principal stress or deformation rate orientations across the plate
boundary rift. Maximum compressive stress directions are near-vertically aligned in different study volumes,
as expected in an extensional tectonic setting. Beneath the natural geothermal fields, the least compressive
stress axis is found to align with the regional spreading direction. In the main geothermal field both
horizontal stresses appear to have similar magnitudes causing a diversity of focal mechanisms.

1. Introduction

The Mid-Atlantic Ridge, crossing Iceland, is expressed by en échelon-arranged volcanic systems that com-
monly include a central volcano and fissure swarm [Sæmundsson, 1979]. Our focus is the Krafla volcanic system
in NE Iceland (Figure 1) comprising a 5–8 km wide and 100 km long fissure swarm trending approximately
N10∘E and transecting its 21 km by 17 km wide central volcano and caldera [Hjartardóttir et al., 2012]. Its
volcano, estimated to be 0.5–1.8 Myr old [Brandsdóttir et al., 1997], underwent 35 eruptions since the last
glacial period [Björnsson et al., 1979]. The Krafla fires is the last rifting episode and occurred between 1974 and
1984. It included 20 rifting events and nine basaltic fissure eruptions [Einarsson, 1991; Buck et al., 2006].

Based on the wave propagation path of regional earthquakes, Brandsdóttir and Einarsson [1979] inferred
that magma was stored in shallow chambers and sporadically injected into dikes along the fissure swarm.
Seismicity ceased after the rifting episode and has been mostly confined to two high-temperature geother-
mal systems [e.g., Arnott and Foulger, 1994a; Schuler et al., 2015], where faults and fissures facilitate the transfer
of hot geothermal fluids to the surface. The Bjarnarflag-Námafjall field is located outside whereas the Krafla-
Leirhnjúkur field is located inside the caldera. Geothermal drilling started in 1974 and energy production
started in 1977. Drill cuttings from boreholes helped to construct local geological profiles of the eastern and
southeastern caldera [Ármansson et al., 1987]. At Hvíthólar (Figure 1b), lavas and hyaloclastites dominate the
upper 1.5–1.6 km of the rock sequence followed by intrusive rocks (gabbro). In the Leirbotnar-Suðurhlíðar
area, lavas and hyaloclastites are encountered to 1.0 km depth or 0.5 km below sea level (bsl) overlying gab-
broic rocks, whereas to the east of Suðurhlíðar, gabbroic intrusive rocks are found at 1.2–1.3 km bsl (from here
onward, we refer to depth as depth below the surface if not followed by the acronym bsl).
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Figure 1. Map of the study area. Station locations are marked by green triangles, the mapped caldera rim in red, the
IDDP-1 well as white cross, and manually picked earthquakes with yellow circles. Our local analysis grid is colored in
blue, and lava flows of the Krafla fires are shaded in dark grey. (a) Map of Iceland, the location of the Krafla volcano (box)
in the Northern Volcanic Zone (NVZ), and the fissures of the volcanic systems (purple lines) delineating the plate
boundary. (b) An enlarged map of the central caldera.

While drilling the Iceland Deep Drilling Project-1 (IDDP-1) borehole in 2009, rhyolitic melt was encountered
at 2104 m depth (1551 m bsl). Its location is 0.5 km southwest of the 1724 AD explosion crater Víti. The melt
likely originated from partially molten and hydrothermally altered crust [Elders et al., 2011; Zierenberg et al.,
2012]. Above the melt pocket at 1482–1527 m depth bsl, the most productive zone for fluid injections was
located in felsic rock [Mortensen et al., 2014; Friðleifsson et al., 2015]. Another well, KJ-39, retrieved quenched
silicic glass southeast of IDDP-1 at 2062 m depth bsl [Mortensen et al., 2010], but chemical differences indicate
no direct link between the melt sources.

Rhyolitic domes and ridges near the caldera rim suggest that magma chambers existed in the past beneath
the volcano, because these rhyolites were likely generated at the sides of an active magma chamber [Jónasson,
2007]. Whether the drilled melt in IDDP-1 is part of a large magma chamber has not been fully determined.
Seismic studies [e.g., Einarsson, 1978; Brandsdóttir and Menke, 1992; Schuler et al., 2015] as well as joint mag-
netotelluric and transient electromagnetic soundings [e.g., Árnason et al., 2009] point toward the presence of
a larger heat source emanating from multiple shallow dikes, a larger melt pocket cooling at shallow depth,
and/or heat being supplied from a depth farther below.

Seismic data were acquired initially to image the shallow magma chamber [Schuler et al., 2015]. Here we inves-
tigate the earthquake seismicity and source mechanisms close to the melt-rock interface and in the overlying
geothermal field to better understand the processes involved. In addition, we examine the crustal stress state
or deformation rate at Krafla a quarter century after the last rifting episode.

2. Data

A seismic array comprising 27 Güralp 6TD/30s and one ESPCD/60s instruments, complemented by 4 LE-3D/5s
stations that were operated by the Icelandic Meteorological Office (IMO), collected data during the period
from August 2009 to July 2012. Station distributions changed slightly over time, which entails that we study
and compare only consistent subsets of data without testing the effect of a network change. Typically,
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25 seismometers were recording earthquakes down to local magnitudes (ML) of about−1. Noise levels appear
to be fairly constant at each receiver over different time periods. We used the Coalescence Microseismic
Mapping (CMM) method by Drew et al. [2013] for initial detection and localization of earthquakes. Arrival-
time picks of events with high signal-to-noise ratio (SNR) were manually refined. Hypocenter locations were
taken from Schuler et al. [2015], who determined them by a 3-D tomographic inversion. Improved relative
locations (Figure 1) are achieved by double-difference calculations [Waldhauser and Ellsworth, 2000] using the
3-D velocity model. Hypocenter location errors, estimated during the tomographic inversion, are mostly less
than 150 m. The peak frequencies of P wave first arrivals are typically about 10±2 Hz in the central part of the
caldera.

3. b Values in Volcanic Areas

The size distribution of earthquakes within a seismogenic volume and time period is commonly described
by the power law [Ishimoto and Iida, 1939; Gutenberg and Richter, 1944] log N = a − bM, with N being the
cumulative earthquake number of events with magnitudes ≥ M, a being the productivity of the considered
volume, and b is the relative size distribution. Some factors affecting the b value are material heterogeneity
[Mogi, 1962], thermal gradient [Warren and Latham, 1970], and applied stress [Scholz, 1968; Schorlemmer et al.,
2005]. For tectonic regions, b averages to about 1.0 [Frohlich and Davis, 1993]. In volcanic areas, high b values
(b≥1.3) are mostly resolved in small volumes embedded in average (b≤1.0) crust [e.g., Wiemer and McNutt,
1997]. In particular, elevated b values are found close to magma chambers, where strong heterogeneities,
thermal gradients, high pore pressures, extensive fracture systems, and circulating geothermal fluids are
expected [Wiemer and Wyss, 2002]. Volcanic zones that exhibit elevated b values, collocated with inferred
magma pockets, have been reported for both deeper (7–10 km) and shallower (3–4 km) depths [McNutt,
2005]. McNutt [2005] recognized that there is often a characteristic temporal b value sequence associated with
volcanic intrusions and eruptions. The first short-term b value peak is attributed to high geothermal gradi-
ents [Warren and Latham, 1970], whereas a following longer-lived b value peak is caused by an increase of the
pore pressure analogous to a reservoir undergoing fluid injections [Wyss, 1973]. Thereafter, b values return to
normal crustal levels.

At the Krafla volcano, Ward et al. [1969] estimated a b =0.84±0.29 and b=0.83±0.16 using P and S wave
amplitudes, respectively, in the central part of the caldera prior to the Krafla fires in 1967. During the rifting
episode in 1978, Einarsson and Brandsdóttir [1980] obtained a high b value of 1.7±0.2 for an earthquake swarm
recorded during a dike injection north of Leirhnjúkur. The Mid-Atlantic Ridge is another place where high
b values were estimated during swarm activities [Sykes, 1970]. At Krafla, Arnott and Foulger [1994a] recorded
no major swarm activity after the last eruptive rifting episode ended, with most events interpreted as main
shocks. They calculated b=0.95±0.23 at Leirhnjúkur, b=0.62±0.14 at Bjarnarflag, b=1.25±0.30 in the dike
zone between Bjarnarflag and Leirhnjúkur, and b=0.77 ± 0.10 of the entire region. The elevated values in
the dike zone were likely caused by shallow intrusions [Arnott and Foulger, 1994a]. We investigate the size
distribution next to the known location of melt to see whether increased values are found.

3.1. The b Value Estimation
For calculating earthquake magnitudes, we employ a local magnitude determination [Bormann et al., 2013]
and calibrate the formula against the South Iceland Lowland (SIL) magnitudes reported by IMO. We remove
the instrument responses from the waveforms and convolve the displacement data with the response of
a Wood-Anderson seismograph. The maximum peak-to-peak amplitudes were automatically determined.
Station corrections are applied to account for site-specific effects. A multistation approach further reduces
source-specific effects (e.g., directivity). However, smaller events are recorded at fewer stations and therefore
have less well-constrained magnitude estimates. Our magnitudes and errors represent the mean magnitudes
and errors that are calculated from the three-component recordings at each station. Carefully determining
the magnitude of completeness (Mc), the minimum magnitude at which the earthquake catalog is complete
is required before b values are estimated [Wiemer and Wyss, 2002]. We estimated Mc using the entire-
magnitude-range method described by Woessner and Wiemer [2005] as well as the maximum curvature
method. The maximum likelihood b value [Tinti and Mulargia, 1987] is determined by

b = 1
log(10)ΔM

log

(
1 + ΔM

M − Mc

)
, (1)

SCHULER ET AL. KRAFLA SEISMICITY AND FOCAL MECHANISMS 3



Journal of Geophysical Research: Solid Earth 10.1002/2016JB013213

where M is the sampling average of the magnitudes. The bin width is constant and was determined by our
average magnitude error of 0.2. In estimating the confidence limits, we follow Shi and Bolt [1982]. We decided
to temporally map b values within periods of constant station distributions and spatially at discrete nodes
(grid cells). We set the minimum number of events within a volume to estimate the b value to 100 earthquakes,
double the minimum number suggested by Schorlemmer et al. [2014].

Earthquake swarms may bias b value estimation [Farell et al., 2009], because it is based on a Poissonian event
distribution. Related earthquakes, like foreshocks and aftershocks, are removed prior to calculating the
background b. A cumulative rate method was employed to identify earthquake swarms using similar param-
eterizations to those described by Jacobs et al. [2013]. The minimum event number of a potential earthquake
swarm was set to four above the average event rate. A distance rule is applied where earthquakes with greater
distance than 10 km from the mean event location of a potential swarm are rejected. Finally, a time rule ensures
that different swarm sequences are separated by at least 4 days. Whether b values changed significantly
after removing them from the complete event catalog was evaluated following Akaike’s [1974] Information
Criterion (AIC). The AIC score of both original and declustered catalogs having the same b values is compared
to the score where the catalogs lead to different b values. After Utsu [1992],

ΔAIC = −2(N1 + N2) ln(N1 + N2) + 2N1 ln
(

N1 +
N2b1

b2

)
+ 2N2 ln

(
N2 +

N1b1

b1

)
− 2. (2)

N stands for the number of earthquakes in each group. The difference in b values are not considered significant
if ΔAIC<2 [Utsu, 1999].

4. Seismic Source Mechanisms

When shear slip occurs on a buried fault, shear stress is released in the form of elastic waves. The far-field
properties of these waves (polarities, amplitudes) are then used in estimating the source radiation pattern
or mechanism. Double-couple (DC) radiation patterns are the result of shear slip on planar faults, whereas
more complex radiation patterns are summarized as non-DC resulting from nonshear faulting. Involvement
of fluids, slip along curved faults and fractal faulting are some possible causes that lead to earthquakes with
non-DC radiation patterns in the upper crust [Frohlich, 1994]. Short-period non-DC events are commonly
observed within geothermal areas, such as in Iceland [Foulger and Long, 1984] and California [Ross et al., 1999;
Foulger et al., 2004]. Tensile faulting was reported from a geothermal field in West Bohemia, Czech Republic
[Vavrycŭk, 2002], mixed tensile and shear faulting found at Hengill-Grensdalur [Julian et al., 1998], and vertical
dipole radiation patterns identified inside the Long Valley caldera [Foulger et al., 2004]. More rarely, implo-
sive earthquakes are recorded in the Námafjall field and the Krafla fires dike zone [Arnott and Foulger, 1994b].
Most of these studies found the non-DC and DC events interspersed in space and suggested that they are
linked to geothermal fluids (circulation of fluids, phase changes, or fluid compressibilities). About 70–75%
of the events at Hengill-Grensdalur in Iceland were classified as non-DC mechanisms with mostly positive
volumetric (explosive) components [Miller et al., 1998]. At The Geysers, about 50% have significant volumetric
components [Ross et al., 1999] with equal numbers being implosive and explosive. Differences between these
two areas are that Hengill-Grensdalur is undeveloped and water-dominated system whereas The Geysers
is a steam-dominated and heavily developed system [Ross et al., 1999]. Besides short-period non-DC events,
long-period earthquakes are related to fluid-solid interactions with repetitive excitations such as resonance
effects of fluid-filled cracks or conduits [e.g., Chouet, 1996; Maeda et al., 2013]. Although such signals are
observed at Krafla, we do not discuss them here.

The pressure (P), neutral (N), and tension (T) orientations, inferred from shear-faulting events, were used to
interpret the stress orientations in other parts of the North Atlantic ridge [Klein et al., 1977; Foulger, 1988]. They
suggest that the least compressive stress (𝜎3) is mostly aligned with the spreading direction. The unit eigen-
vectors of the stress tensor are called the principal stress axes (s⃗1,2,3) and distinguished from the eigenvalues,
which are termed principal stress magnitudes (𝜎1 ≥ 𝜎2 ≥ 𝜎3) with positive values meaning compression.
Arnott and Foulger [1994b] noted a high variability in the P and T axes following the Krafla fires rifting episode
suggesting that the average deviatoric stresses were small. In the dike zone, the greatest compressive stress
(𝜎1) was aligned with the spreading direction. This observation lets them conceptualize a stress cycle that
included interrifting (𝜎1 ≃𝜎2>𝜎3), immediate prerifting (𝜎1 ≃𝜎2 ≃𝜎3), and immediate postrifting (𝜎1 ≃𝜎2 ≫𝜎3)
periods. We analyze and interpret P and T axes orientations of events recorded 25 years after the last rifting
episode.
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4.1. Calculating Focal Mechanisms
In addition to wave polarity information, amplitude ratios can help significantly to constrain the inversion
of focal mechanisms [Ross et al., 1999]. We prepared the amplitudes such that the signals of the manually
picked events are rotated into the ray frame to analyze compressional and shear waves separately. Incidence
and azimuthal angles were obtained from 3-D ray tracing the velocity model using an eikonal solver [Vidale,
1988; Hole and Zelt, 1995]. These angles were compared to angle estimates obtained by particle motion
analysis. We found that the incidence and back-azimuth angles retrieved by particle motions mostly deviated
less than 16∘ and 9∘, respectively, from the ray-based estimates. Thereafter, the velocity recordings were trans-
formed to displacement. We followed Boore [2003] in compensating for path effects using the 3-D ray paths
and an effective seismic quality factor of 50. Based on Schuler et al. [2014], we regard this value as a reason-
able estimate for a sequence comprising layered basalt flows, hyaloclastites, and intrusive rocks. We manually
picked the P wave first arrival polarities on the unfiltered data to avoid interpreting the filter imprint. The peak
amplitudes of the P- and S wave first arrivals, however, were determined on traces convolved with a Butter-
worth response of order 2 (corner passband frequencies at 1.5 Hz and 22 Hz). The polarity orientations of the
receivers were verified by teleseisms.

Rock anisotropy, strong seismic attenuation, and other lateral heterogeneities are characteristics for volcanic
areas and may affect our arriving amplitudes and introduce errors into the source inversion [Frohlich, 1994],
but they can be difficult to measure [Pugh et al., 2016]. Therefore, we use amplitude ratios in the source inver-
sion where available, as these are less sensitive to path effects. A Bayesian approach is used for moment tensor
source inversion by following Pugh et al. [2016], which allows rigorous inclusion of both measurement and
location uncertainties in the resultant probability density function (PDF). The inversion approach determines
the probability distribution over the moment tensor space given the observed data. P wave polarities can
be combined with the corrected amplitude ratios to determine the source radiation pattern. The inversion
was run twice, initially constrained to the DC space and then over the full range of moment tensor solutions,
allowing non-DC components to be constrained along with an estimate of whether the source can be
described by a DC source or not.

4.2. Estimating Crustal Stress or Deformation Rate
The first motions recorded at seismic stations are directly linked to the displacement on the fault. The local
principal strain rate axes are always 45∘ inclined from the shear plane regardless of the rock properties
(i.e., cohesion). These define the P and T axes. They are found by calculating the best match to the first
motions and amplitude ratios. The principal stress directions s⃗1,2,3 may be considered aligned with the P, N, and
T axes. This assumption introduces a stress direction uncertainty of ±15∘ [Célérier, 2008]. DC focal solutions
can be used to invert for a uniform stress field, but the model requires the faults to occur on randomly oriented
planes of weakness (preexisting faults) and that the material behaves isotropically and linearly. Furthermore,
the focal solutions need to show enough orientation diversity with the fault slip parallel to the maximum
resolved shear stress and that the movement of one fault does not influence the slip direction of others. We
invert for a uniform stress field using the SATSI algorithm [Hardebeck and Michael, 2006] by exploiting the
fact that such a stress field applied to randomly oriented faults leads to a range of DC solutions [McKenzie,
1969]. Strike, dip direction, and dip angles of randomly picked DC nodal planes are provided as input. Based
on the nodal plane ambiguity angle of about 20∘, we verified that the focal diversity is sufficient to resolve the
stress orientation. The inversion result represents the best fitting orientation of the principal stress axes and
the relative stress magnitude ratio R =(𝜎1 − 𝜎2)∕(𝜎1 − 𝜎3), which describes the shape of the stress ellipsoid.
Another model exists contrasting the uniform stress model. It assumes that crustal stress is heterogeneous
but exhibits uniform frictional strength [Smith and Heaton, 2006]. The evolution of such heterogeneous crustal
stresses may be formed by dislocation-velocity-weakening (Heaton pulse) ruptures [Heaton, 1990]. As Rivera
and Kanamori [2002] suggested, both models are end-members and the real Earth likely shows characteristics
of both models.

An alternative view is that fault slip inversions reliably constrain the strain rate or, more accurately, the defor-
mation rate. Here we mainly follow the arguments of Twiss and Unruh [1998]. The cumulative effect of many
displacements (faults) over a larger volume can be regarded as a small continuum deformation. Inverting the
P and T axes thus gives most directly information about the deformation rate, which is related to stress via
the rheological properties of the rock. One of the drawbacks in both stress and deformation rate approaches
is that if the medium has preferred shear plane orientations (zones of weaknesses), the inverted global,
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Figure 2. (a) Map of the central caldera and earthquake distribution recorded in 2009–2012. The Krafla fires lava
flows, Víti crater lake, road, and power plant are shaded in dark grey. (b, c) Depth sections of the event distribution
and trajectories of all wells. (d, e) Histograms illustrating the number of events versus depth. The number of events
within a radius of 250 m of the IDDP-1 well are displayed in Figure 2e along with the thermal recovery profile
(black line). Horizontal arrows mark the depths where melt was encountered. (f ) Histograms with 1 day event bins
in the area outlined in Figures 2a–2c but only for the period where we have injection volume data. Labeled arrows
indicates swarms discussed in the text. The average injection rate of the main injection well KJ-26 at Krafla is
superimposed (dashed blue line) after Ágústsson et al. [2012].
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in contrast to the local, P and T axes solutions are likely to be biased, because they do not have to be
perpendicular, whereas the principal stress or deformation rate axes do [Twiss and Unruh, 1998].

5. Results

Most of the detected seismicity is concentrated in the geothermal fields and in the uppermost 2–3 km of the
crust (Figures 2a–2c). The largest number of events occur at about 1.5 km depth bsl with a relatively steep
drop at greater depths (Figure 2d). Collecting events only within a radius of 250 m of the IDDP-1 borehole
reveals a sharp drop of seismicity below the depth where melt was encountered (Figure 2e). A recovered
thermal profile by Friðleifsson et al. [2015] is overlain, where superheated steam reaches about 500∘C at the
bottom of IDDP-1 and the melt temperature is expected to be around 900∘C.

On average we detected eight events per day above magnitude −0.6 in the first 319 days and typically one to
two events every day above magnitude −0.1 in the second 675 days of recording (Figure 2f ). The rate change
of the total number of recorded earthquakes coincides with a change in the network density. Nine periods
are identified with increased seismicity rates of more than 50 additional earthquakes per day (Figure 2f ).
Two swarms occurred in August 2009, several larger and smaller ones in 2010, and two (not shown here) in
2011. We describe below the borehole activity preceding the four swarm periods marked in Figure 2f, but
with more focus on the first one that serves as an example. Borehole activity data are compiled by Ágústsson
et al. [2012] and Friðleifsson et al. [2015], as well as received by the well operator Landsvirkjun (S.H. Markússon,
personal communication, 2016). Boreholes that injected relatively constant amounts of fluids are KJ-26
(0.08–0.09 m3/s), KJ-11 (0.0085 m3/s), KJ-38 (0.020–0.026 m3/s), and some in KJ-35. The temperature of
injected fluids is about 126∘C at KJ-26/11. Preceding swarm 1 is a fluid injection stop of 0.025 m3/s at IDDP-1
on 11 August and deepening of borehole KT-40 between 13–29 August. Events of swarm 1, located within
cluster E of Figure 2a, were manually picked and relocated around KT-40. Small event magnitudes with low
SNR led to large picking uncertainties. Circulation losses are reported at KT-40 and the drill bit got stuck
multiple times. Attempts to loosen the drill bit by pulling up the drill string and the detonation of three small
explosives [Mortensen et al., 2009] caused some better SNR events. We tried to use these arrivals to verify
whether our velocity model is reasonable. A relocated event, originating from an attempt to loosen the stuck
drill string, is shown in Figures 2a–2c. The match between the well trajectory and the relocated hypocenter
is within the location uncertainty.

Swarms 2 and 3 occur after periods when KT-40 was closed and reopened, and KJ-39 was closed in January
and early February 2010. Swarm 4 matches the date when a fluid discharge test was performed on IDDP-1.
KJ-39 was closed 6 days before this test.

We sporadically observe small-amplitude aftershocks in the coda of larger-amplitude earthquakes, but more
frequently, we identify events with similar waveforms and magnitudes, sometimes separated only by a few
seconds (Figure 3a). They share a common hypocenter location within error bars as well as near-identical
source mechanism. We refer to them as multiplets, whose main differences consist of phase delays arising
from slightly diverging ray paths. We performed waveform correlations on earthquakes identified by CMM
and grouped those that had cross-correlation coefficients above 0.85 on at least two stations. Lower coef-
ficients often retain earthquakes in a similar waveform group with hypocenter locations not explainable by
the estimated ±150 m location uncertainty. A 4 s time window, starting at the P wave arrival, was chosen for
correlation to include both P and S wave arrivals and some coda signal. We band-pass filtered the vertical
component signals 2–18 Hz to reduce noise. On average, 32% (range 25–45%) of the earthquakes have at
least one other similar event within our recording period. The wide percentage range mainly results from
a few stations having significant data gaps at times. Figure 3a illustrates example waveforms of multiplets
occurring within seconds of one another and that have their hypocenters located in the seismicity cluster A at
1.8 km depth bsl (Figures 2a–2c). Another example of multiplets that have longer interevent times is shown in
Figure 3b. Seven matching signals are aligned in time and occurred weeks to months apart from one another
as we found is typical. Their source location lies about 100 m SE of the IDDP-1 borehole at 1.5 km depth bsl.

The spatial clustering of events at Krafla allows us only to map magnitude distributions in specific areas within
the caldera. We selected earthquakes within spheres of two sizes having diameters of 1.0 km and 1.5 km and
centered at nodes separated by 125 m. No significant changes are observed regarding the choice of the two
sphere sizes and cell node separation other than a smoothing effect. We separately prepared maps for the
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Figure 3. (a) Earthquakes with similar waveforms recorded at station K090 within seconds of one another. An enlarged
signal window and the event focal mechanisms in lower hemisphere equal-area projection are displayed above. Black
quadrants contain the tension axes. (b) Seven normalized waveforms from station K100 are aligned on a P wave arrival
(vertical bar). Their ML range between −0.3 and 0.5. Black line represents the stacked waveform. Four well-constrained
focal solutions of the events are shown above with their origin times.

319 day and 675 day long periods, because they have different network configurations and have average
interstation distances of 1.5 km and 2.0 km, respectively. The majority of their b values match within their
errors. Therefore, we measure no significant temporal b value change. Therefore, we cautiously combine the
two earthquake catalogs to estimate the size distribution at each node using the higher Mmin=Mc −ΔM∕2
value that resulted from the two separate time period analyses. An average Mmin of −0.6± 0.1 and −0.1± 0.1
were estimated for all the nodes in the 319 and 675 day periods, respectively. We attribute the increased
Mmin for the later period mainly to the increased interstation spacing, because calculating Mmin for shorter time
segments within the two analysis periods and locally at selected nodes returned similar values. In Figure 4,
the b value and error map is generated using the combined catalog of two recording periods. A sphere radius
of 0.5 km and a minimum of 100 earthquakes per node were required for populating a node with a value.
We observe elevated values at the edges of the colored patches, which are caused by rapidly decreasing
earthquake numbers. The reduced number of events within the analysis volumes (spheres) correspond to
increased errors in estimating b. Instead of selecting all events within an analysis volume, a constant number
of events may be chosen randomly or with increasing time until a defined number is reached. This approach
reduces edge effects, but may also select events distant from the node center that are then representing the
size distribution of that node.

Kamer and Hiemer [2015] presented a b value estimation method that explores the model complexity given
the data. An advantage of this approach is that every earthquake is used only once to compute a b value within
a cell of a node. We select the models giving a better fit to the data than the initial model, which includes
events of the entire region to calculate one b value. Instead of dividing the surface area into cells, we segment
the depth profile, shown in Figure 4d, into cells such that we can apply the method in 2-D. All selected models
are used then to build ensemble averaged b values. We found no significant spatial pattern. Likewise, selecting
a test volume at the bottom of IDDP-1 did not return elevated b values above 1.

An average b = 0.79± 0.04 (−0.4 ≤ ML ≤ 2.0) of the entire region was estimated incorporating the entire
recording period. We have removed events that significantly exceed the average daily event rate from the
earthquake catalog (i.e., swarms) and recalculated the regional b value. A ΔAIC<2 suggests that the removal
of these earthquakes does not affect our regional estimate.
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Figure 4. Size distribution map of the central Krafla caldera including data recorded between September 2009 and July 2012. The b values were estimated within
spheres with radii 0.5 km around the cell nodes. The nodes, marked as squares, are separated by 125 m. A minimum number of 100 events was requested to
populate a node. Surface locations of all geothermal wells and the trajectories of IDDP-1 and KJ-39, which both drilled into melt, are colored in pink.

Only events that have at least 12 polarity picks at distant stations are selected for further interpretation to
ensure a minimum coverage of the focal spheres. More than three quarters of them are located deeper than
1.4 km bsl and the majority have magnitudes above −0.2. This is in agreement with our observation that
larger-magnitude events occur closer to the depth of the peak seismic activity. Example DC solutions are illus-
trated in Figures 5a–5c with black lines indicating possible DC nodal planes and triangles marking the polarity
picks (up or down) at different stations. On the sides of the hemisphere plots, lune source-type plots [Tape and
Tape, 2013] allow us to visually relate the retrieved moment tensors to an appropriate physical source
mechanism. The diagram’s center, top, and bottom represent DC, purely explosive, and impulsive mecha-
nisms, respectively. Colored dots show the PDF of the solution with red colors marking higher and blue lower
probability. The PDF spread reveals that we need well-constrained focal solutions to uniquely assign a physical
source mechanism to an event. Figures 5a and 5b show near-vertical dip slips, and Figure 5c a normal fault-
ing mechanism. The latter is less well constrained and has two similarly fitting fault plane pairs with different
strike directions. This event is counted as a DC mechanism, but its best fitting strike angle is not used further.

A ternary diagram (Figure 6a) provides some quantitative information about the DC faulting style of earth-
quake clusters. We assume close Andersonian faulting, although some nonoptimally oriented fault reactiva-
tions may lead to inaccurate faulting style representations on the ternary diagram [Célérier, 2010]. We find that
most events in clusters A–D show normal faulting. Separately analyzing individual spatial clusters or grouping
the events into different depth bins did not reveal a coherent change of pattern. We followed Frohlich [2001]
in dividing the focal solutions into four different regimes: normal, reverse, strike slip, and odd. Few solutions
exhibit strike slip or reverse faulting characters. Solutions that do not fall into a corner region are termed odd
and represent oblique-slip on steep planes or strike slip on low-dipping planes. Several of these odd solutions
are found close to the T axis with near-vertical or near-horizontal nodal planes. Rose diagrams of their strike
directions, grouped according to their spatial clusters, present a diverse distribution (Figures 6b–6d). In clus-
ter D, the strikes are mostly parallel in northeastern and southern directions. Clusters A and B are not as clear,
but we have here only a few data points.

The estimated strike, dip, and rake information were inverted to obtain a uniform stress field orientation for
clusters A and B (Figure 7). The grouping of spatially separate event clusters was performed visually. Cluster
D in Figure 2a is split into a northwestern (D-NW) and southeastern (D-SE) part. We randomly selected one of
the two fault planes to be the correct one. Cluster D-NW mainly covers the surface area between boreholes
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Figure 5. (a–c) DC focal mechanisms displayed in lower hemisphere projections on their left, with stations (triangles)
indicating their polarity picks (up, down) of the arriving waveforms. Black lines show the distribution of possible fault
planes for DC-constrained solutions. On their right, lune source-type plots [Tape and Tape, 2013] of the PDF are plotted
with blue colors corresponding to low and red to high probability. (d) Illustration of a strongly implosive event and
(e) an explosive event with all arrivals having the same polarities. Details of the event magnitudes and locations are
given below subfigures in Figures 5a–5c and on their sides in Figures 5d–5e.

KJ-26 and IDDP-1. Figures 7b–7e show the stress inversion results along with the P and T axes of the individual
earthquakes. Colored points in the background represent solutions that are obtained by bootstrap resampling
the data set. Large spreads correspond to less constrained solutions of s1,2,3. The two separate clusters A and
B show similar principal stress axis directions, but only a few events are selected. The principal axes cannot
be resolved clearly for D-NW and are weakly constrained for D-SE. In all areas the largest compressive stress
direction (s1) is near vertical. The s2 and s3 in the D subclusters, however, appear to have similar magnitudes,
which are reflected in the relatively high value of R as well as in the wide distribution of the s2 and s3 solutions
generated during the bootstrap resampling.

5.1. Non-Double-Couple Mechanisms
About 10% of events in cluster A, 17% in cluster B, and 18% in cluster D show non-DC source mechanisms.
Cluster C had only a handful of events. We obtain these numbers by visually checking the lower hemisphere
projections of forced DC solutions and also the spread of uncertainty (95% contour interval) in the lune
source-type plots. We only counted an event as non-DC, if the 95% contour interval of the uncertainty map
did not overlap with the DC point in the lune plot. Sole inspection of the lune diagram would, of course, not
allow a decision to be made as to whether an event is DC or not. We may have picked only positive polarities
in the compressional, or negative polarities in the dilatational, quadrants indicating a pure isotropic source in
the lune plot, although it may be a DC event. We further find that one third of the non-DC events in cluster A,
18% in cluster B, and 30% in cluster D show negative volumetric components.

Locations of sources with large volumetric changes and no opposite polarity picks are shown in Figures 2a–2c.
Most non-DC sources are explosive, with only two being implosive. We note that these events lie locally below
the deepest points of the nearest boreholes.

6. Discussion

The seismicity in 2009–2012 was governed by small-magnitude events during a volcanically quiet period.
An estimated 32% of the earthquakes are repeating events. This clustering rate fits well the rates of 24–37%

SCHULER ET AL. KRAFLA SEISMICITY AND FOCAL MECHANISMS 10



Journal of Geophysical Research: Solid Earth 10.1002/2016JB013213

Figure 6. (a) Equal-area projection, after Kaverina et al. [1996], displaying the distribution of 182 well-constrained DC
focal mechanisms (dots). Dot sizes are scaled relative to their event magnitudes. Compressed quadrants of the beach
ball plots are colored black. Following Frohlich [2001], we further delineate corner regions in which faulting mechanisms
are considered predominantly as normal, reverse (thrust), and strike slip. Curved lines indicate where the P, N, and T axes
lie within 30∘, 30∘ , and 40∘ of the vertical, respectively. (b–d) Rose diagrams that show the strike directions of
well-constrained DC nodal planes. Cluster letters and number of events are given below the plots.

reported from other active volcanic caldera systems, which have events with similar magnitudes [Massin et al.,
2013, and references therein]. The nonrepeating events may represent ruptures of partially healed preex-
isting faults or intact rock. Considering the magnitudes of our events, typical source dimensions of up to a
few tens of meters can be expected [Wyss and Brune, 1968]. Circulating geothermal fluids possibly limit crack
propagation during earthquake ruptures and hence their size [Foulger and Long, 1984]. We find a weak cor-
relation between increased numbers of multiplets and swarms. The average magnitudes of repeating events
is 0.1±0.5 (2061 events) and for swarms −0.2 ± 0.4 (703 events). The weak correlation between increased
numbers of multiplets and swarms is used sometimes to argue that the locally modified stresses leading to
swarms reactivated preexisting faults.

We observe that swarms often occur simultaneously or days after fluids have been injected, the injection rate
changed, or circulation losses occurred while drilling. Fluid reinjection started in 2002 at Krafla, partly in an
attempt to sustain reservoir pressure. Ágústsson et al. [2012] noted that induced seismicity occurred as soon
as more than 0.04–0.06 m3/s were injected at Krafla. Circulation fluids lost during drilling reached volumes of
up to 0.04 m3/s [Mortensen et al., 2009]. We also observe elevated seismicity when larger volumes are injected.
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Figure 7. (a) Map showing the hand-picked earthquake epicenters (circles), fissures (purple lines, after Hjartardóttir et al. [2012]) used as a proxy of the rift
axis, caldera rim (red), and the dike zone (green) of the Krafla fires. (b–e) Lower hemisphere equal-area projection of P (open circles) and T (black solid points)
axes of well-constrained DC events for clusters A, B, D-NW, and D-SE. The selected events are highlighted in Figure 7a. Red (s⃗1), green (s⃗2), and blue (s⃗3) crosses
represent the best fitting principal stress axes. R is the relative stress magnitude. Color-coded circles mark stress axes solutions obtained by bootstrap
resampling 1000 times.

Small injection volumes probably cause smaller magnitude events or aseismic slip. We observe little swarm
activity during periods when little or no change in fluid balance occurs. This suggests that fluids are likely
candidates for the triggering microearthquakes. In the case of injections, fluids locally increase the pore pres-
sure and reduce the effective normal stresses on nearby faults and so bring them closer to failure [Raleigh
et al., 1976].

6.1. Earthquake Size Distribution
Our b values (Figure 4) of the Krafla caldera indicate normal crustal values, which match the findings of Arnott
and Foulger [1994a] 20 years earlier. It appears that the b values are not elevated despite the presence of melt
at shallow depth, associated high geothermal gradients and pore pressures, and sequences of extensively
fractured rocks. Possibly we are observing the third stage of the characteristic b value sequence, described
earlier, where intrusive melt has been sitting in the crust for some time and the initially increased pore pressure
due to magmatic degassing and hot geothermal fluids has reached a relatively constant level. In the case of
a long-lived melt body beneath Krafla, the concentrated stress introduced during earlier dike formation may
have been dissipated through on-going rifting. An alternative explanation for the low b values is that the
melt pockets are small localized features that do not cause increased small-magnitude seismicity. However,
this would not be in agreement with tomographic images [e.g., Schuler et al., 2015] and the fact that heat is
expelled over large surface areas. Our preferred explanation therefore is a larger single, or multiple smaller
melt bodies, embedded in a hot and plastically behaving crust.

6.2. Double-Couple Earthquakes
Most of the focal solutions in Figure 6a exhibit normal faulting characteristics. The strike azimuths
(Figures 6b–6d) appear scattered, but nonetheless show a slight dominance in NE-SW and E-W directions.
Both observations agree with results presented by Arnott and Foulger [1994b]. A fast shear wave polariza-
tion analysis by Tang et al. [2008] found two preferred fast-polarization directions, N-S and E-W, which were
interpreted as two fracture systems oriented perpendicular to each other.

Inverting focal solutions for a uniform stress field has limitations. A uniform stress field is perhaps a good
assumption in some regions [Zoback and Zoback, 1980], but may give meaningless results in others [Smith
and Heaton, 2006]. If a new fault plane develops in isotropic rock with a uniform background stress field, the
P and T axes may give an indication of s⃗1 and s⃗3, respectively. In more realistic settings, slip frequently occurs on
nonoptimally oriented, preexisting planes of weaknesses. We find that at least one third of events at Krafla are
repeating events. Célérier [2008] proposed that reactivated faults are more likely to be near-optimally oriented
if they plot closer to the corners in a ternary diagram (Figure 6a). However, selecting only these events to invert
for stress directions would reduce the focal diversity needed to solve for the principal stress axes.

Wyss et al. [1992] argue that it is reasonable to assume a uniform stress field if subvolumes of data return
similar results. The small number of earthquakes prevents us from dividing our clusters into smaller volumes
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except for cluster D. Clusters A and B exhibit similar stress orientations with s1 pointing vertically down and
s3 being parallel to the spreading direction. These axis orientations coincide with the classical model of an
extensional tectonic stress regime where 𝜎1 ≃ 𝜎2 >𝜎3. Similar results have been reported from other parts
of the rift axis [e.g., Klein et al., 1977; Foulger, 1988]. Hydrofracturing borehole stress measurements in east
Iceland show that the maximum horizontal stress is subparallel to the nearest fissure swarms in the axial rift
zone and thus the minimum horizontal stress is subparallel to the spreading direction [Haimson and Rummel,
1982]. They also show that horizontal stresses increase slowly with depth and that the vertical stress becomes
larger at a few hundred meters depth, leading to optimal conditions for normal faulting. Borehole pressure
logs from IDDP-1 show a pivot point at 1.95 km depth with a pressure of 15.5 MPa [Friðleifsson et al., 2015].
The pivot point, usually representing the depth of the dominating formation feeding zone, determines the
formation pressure at that depth. Near crystallizing and cooling magma walls, significant tensile stresses may
develop with s⃗3 perpendicular to the lithostatic load, whereas below the brittle-plastic transition we expect
the lithostatic load to become 𝜎3 due to the deformation in response to buoyancy [Fournier, 1999].

Cluster D-NW and D-NE exhibit near-vertical s1, but s2 and s3 appear to be different than in clusters A and
B (Figure 7). Cluster D-NW is especially unconstrained as is indicated by the large spread of solutions gen-
erated during bootstrap resampling. Perhaps this shows that 𝜎2 ≈𝜎3. In contrast to the volumes of clusters
A and B, D mostly encompasses the exploited geothermal field undergoing fluid injections/withdrawals.
Two active wells, KJ-26 and IDDP-1, both penetrate the volume of cluster D-NW. Earthquakes used for our
stress analysis all originate from a similar depth range, which is dominated by intrusives at the IDDP-1 site.
In contrast to our horizontal stress change indications, Martínez-Garzón et al. [2013] reported vertical stress
changes between reservoir and adjacent host rock at The Geysers likely induced by poroelastic or thermoe-
lastic stressing. Around producing fractures, where strong temperature and pressure gradients are expected,
thermoelastic effects may dominate over poroelastic effects and alter the stress state within the reservoir
[Segall and Fitzgerald, 1998].

For the Bjarnarflag-Námafjall field and the dike zone, Arnott and Foulger [1994b] found just after the Krafla fires
rifting episode that the stress orientations were highly variable and s⃗1 was perpendicular to the rift axis. The
latter was possibly caused by multiple intrusions and caused s⃗1 to rotate from vertical to horizontal. About
20 years after the Krafla fires and about 5 km to the north along the rift axes, we find s⃗1 vertical inside and
outside the main exploited geothermal field. s⃗3 is nearly aligned with the spreading direction outside the main
geothermal field and oriented as imagined during an interrifting period [Arnott and Foulger, 1994b]. Bergerat
et al. [1990] and Plateaux et al. [2012] also found s3 aligned parallel to the plate divergence direction both
in and off the rift zone for locations to the north, south, and east of Krafla. The horizontal stress axes in the
lower part of the productive field suggest 𝜎2≈𝜎3. We know further from geodetic measurements [Ali et al.,
2014] that the observed surface deformation is attributed to the half-spreading rate of 9 mm/yr of the plates,
viscoelastic relaxation deriving from the Krafla fires, and a shallow deflating magma reservoir. Therefore, the
local stress field may be affected by a more complex interaction of different stress sources.

If we apply the deformation rate interpretation of slip inversion data, the global P and T axes are not inter-
preted as s⃗1 and s⃗3 but instead as the most and least compressive deformation rate directions. The smallest
deformation rate axis is closely aligned with the spreading direction in clusters A and B, somewhat diffuse in
D-NW, and parallel to the rift in D-SE. Local fault block rotations during slip are not considered here.

6.3. Non-Double-Couple Earthquakes
A large proportion of events are consistent with non-shear-faulting behavior. Similar to previous studies, we
found numerous nonshear events at Krafla interspersed with DC earthquakes. However, we classified less than
20% as distinct nonshear events, of which most are explosive and have magnitudes between −0.3 and 0.6.
In comparison to some other studies, we believe this low percentage partly derives from including uncer-
tainties in the moment tensor inversion and partly because we sometimes suffer from sparse focal coverage.
Nevertheless, there is tensile and tensile-shear faulting occurring close to the brittle-plastic transition. Ground
water is heated and expands to a high-pressured and superheated fluid near the melt leading to hydraulic
fracturing and brecciation. Exsolving magmatic fluids, comprising hypersaline brine and steam, are expected
to cross the brittle-plastic interface on occasion. Pore pressures in the plastic rock are equal to the lithostatic
load but are hydrostatic in the brittle environment, which will cause the fluid to expand and transform to
superheated steam when moving into the brittle part [Fournier, 1999]. The decompression causes brecciation,
an increase in the strain rate, and stress difference in the plastic rock due to increased fluid movement across
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the brittle-plastic interface [Fournier, 1999]. The fact that superheated fluids are extracted from a highly pro-
ductive zone overlying melt suggests that this is a reasonable conceptual model for this zone. The non-DC
earthquakes are expected to occur in this zone, where fluid can change the ambient stress locally, and cracks
may open or close, or even remain open.

We recorded two mainly implosive events that might be related to thermal contraction of cooling magma
[Foulger and Long, 1984; Miller et al., 1998] underneath. One of these implosive events is less than 300 m south
of IDDP-1 and therefore close to where we expect the melt-rock interface to lie (Figures 2a–2c). The second
is located at the bottom of the seismicity cluster A to the NW, which shows the same characteristic seismicity
distribution as at IDDP-1. Thus, we believe that this event is also located close to an underlying melt zone. This
is supported by tomographic images [Schuler et al., 2015]. A source dominated by near-vertical single force or
a vertical-CLVD mechanism might produce only dilatational first motions as well at the stations, but this pre-
sumes that there is a small region at the surface where we could have recorded compressional first motions.
Physical sources for such mechanisms may include fluid movement or cone-shaped fault structures [Shuler
et al., 2013]. Although we cannot rule out such an alternative explanation, we stick with the simple implo-
sive source explanation. Fluid motions, phase changes, mixing of meteoric and magmatic fluids, and cooling
of the underlying magma pocket are likely to be responsible for the variety of DC and non-DC earthquakes.
Seismogenic faulting within the highly viscous silicic magma may also produce earthquakes with magnitudes
that would be observable with our network [Tuffen et al., 2008]. However, our location uncertainties do not
allow us to pinpoint the hypocenters exactly to one stratigraphic layer, because the whole vertical sequence
at the bottom of IDDP-1, comprising dolerites, granophyres (highly productive zone), and rhyolitic melt is only
about 100 m thick.

On a final note, crustal anisotropy has not been considered in our tomographic model nor in our focal mech-
anism inversions. We expect, however, from shear wave splitting measurements [Tang et al., 2008] and from
the aligned fractures in the extensive fissure system at the surface, that the crustal fabric is anisotropic. This
in turn must affect our moment tensor inversion [Vavrycŭk, 2005]. We have not included nor assessed this
uncertainty yet.

7. Conclusion

The microseismicity within the Krafla caldera between 2009 and 2012 is concentrated near geothermal fields
in the upper 2–3 km. The depth with the largest number of earthquakes above the magnitude of complete-
ness matches the depth of the rock-melt interface at the IDDP-1 borehole. The relative size distributions of
events (b value) are not elevated close to the melt, but rather show average crustal values of b ≤ 0.9. Although
this is a period of volcanic quiescence, a few small-magnitude earthquake swarms were detected at locations
and times suggesting that geothermal fluids are important in the triggering processes. A weak correlation
between swarms and repeating earthquakes is interpreted as stress activation of preexisting faults. About
32% of the events are found to be repeating earthquakes.

Focal solutions of earthquakes suggest that less than about 20% deviate significantly from shear-faulting
mechanisms. Most non-shear-faulting mechanisms involve positive volume changes and only two were
implosive events. The proximity of these events to the expected melt-rock interface depth suggests that
geothermal fluids play an important role in their source processes. We surmise that they occurred in the
superheated steam zone above the melt. The double-couple earthquakes, on the other hand, mostly repre-
sent normal faulting styles. Estimated P and T axes were used to infer the principal stress or deformation rate
axes. We find that the maximum compressive stress (deformation rate) axis is always vertical. The least com-
pressive stress (deformation rate) direction is closely aligned with the plate spreading direction outside the
main geothermal field and is not well defined inside it. Here the relative horizontal stress (deformation rate)
magnitudes are similar.
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