100 research outputs found
Recommended from our members
Cohesive Neighborhoods Where Social Expectations Are Shared May Have Positive Impact On Adolescent Mental Health
Adolescent mental health problems are associated with poor health and well-being in adulthood. This study uses data from a birth cohort of children born in large U.S. cities (N=2,264) to examine whether neighborhood collective efficacy (social cohesion and control) is associated with improvements in adolescent mental health. We find that children who grow up in high collective efficacy neighborhoods experience fewer depressive and anxiety symptoms during adolescence than similar children from low collective efficacy neighborhoods. The magnitude of this neighborhood effect is comparable to the effects of depression prevention programs. Findings do not vary by family or neighborhood income, indicating that neighborhood collective efficacy supports adolescent mental health across diverse populations and urban settings. We recommend greater emphasis on neighborhood environments in individual mental health risk assessments and greater investment in community-based initiatives that strengthen neighborhood social cohesion and control
Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study
Background: Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission. Results: Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites. Conclusions: Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing
The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth
We present new measurements of cosmic microwave background (CMB) lensing over
sq. deg. of the sky. These lensing measurements are derived from the
Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which
consists of five seasons of ACT CMB temperature and polarization observations.
We determine the amplitude of the CMB lensing power spectrum at
precision ( significance) using a novel pipeline that minimizes
sensitivity to foregrounds and to noise properties. To ensure our results are
robust, we analyze an extensive set of null tests, consistency tests, and
systematic error estimates and employ a blinded analysis framework. The
baseline spectrum is well fit by a lensing amplitude of
relative to the Planck 2018 CMB power spectra
best-fit CDM model and relative to
the best-fit model. From our lensing power
spectrum measurement, we derive constraints on the parameter combination
of
from ACT DR6 CMB lensing alone and
when combining ACT DR6 and Planck NPIPE
CMB lensing power spectra. These results are in excellent agreement with
CDM model constraints from Planck or
CMB power spectrum measurements. Our lensing measurements from redshifts
-- are thus fully consistent with CDM structure growth
predictions based on CMB anisotropies probing primarily . We find no
evidence for a suppression of the amplitude of cosmic structure at low
redshiftsComment: 45+21 pages, 50 figures. Prepared for submission to ApJ. Also see
companion papers Madhavacheril et al and MacCrann et a
The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky
Observations of the millimeter sky contain valuable information on a number
of signals, including the blackbody cosmic microwave background (CMB), Galactic
emissions, and the Compton- distortion due to the thermal Sunyaev-Zel'dovich
(tSZ) effect. Extracting new insight into cosmological and astrophysical
questions often requires combining multi-wavelength observations to spectrally
isolate one component. In this work, we present a new arcminute-resolution
Compton- map, which traces out the line-of-sight-integrated electron
pressure, as well as maps of the CMB in intensity and E-mode polarization,
across a third of the sky (around 13,000 sq.~deg.). We produce these through a
joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release
4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from
the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We
present detailed verification of an internal linear combination pipeline
implemented in a needlet frame that allows us to efficiently suppress Galactic
contamination and account for spatial variations in the ACT instrument noise.
These maps provide a significant advance, in noise levels and resolution, over
the existing \textit{Planck} component-separated maps and will enable a host of
science goals including studies of cluster and galaxy astrophysics, inferences
of the cosmic velocity field, primordial non-Gaussianity searches, and
gravitational lensing reconstruction of the CMB.Comment: The Compton-y map and associated products will be made publicly
available upon publication of the paper. The CMB T and E mode maps will be
made available when the DR6 maps are made publi
The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters
We present cosmological constraints from a gravitational lensing mass map
covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama
Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO
measurements (from SDSS and 6dF), we obtain the amplitude of matter
fluctuations at 1.8% precision,
and the Hubble
constant at
1.6% precision. A joint constraint with CMB lensing measured by the Planck
satellite yields even more precise values: ,
and . These measurements agree
well with CDM-model extrapolations from the CMB anisotropies measured
by Planck. To compare these constraints to those from the KiDS, DES, and HSC
galaxy surveys, we revisit those data sets with a uniform set of assumptions,
and find from all three surveys are lower than that from ACT+Planck
lensing by varying levels ranging from 1.7-2.1. These results motivate
further measurements and comparison, not just between the CMB anisotropies and
galaxy lensing, but also between CMB lensing probing on
mostly-linear scales and galaxy lensing at on smaller scales. We
combine our CMB lensing measurements with CMB anisotropies to constrain
extensions of CDM, limiting the sum of the neutrino masses to eV (95% c.l.), for example. Our results provide independent
confirmation that the universe is spatially flat, conforms with general
relativity, and is described remarkably well by the CDM model, while
paving a promising path for neutrino physics with gravitational lensing from
upcoming ground-based CMB surveys.Comment: 30 pages, 16 figures, prepared for submission to ApJ. Cosmological
likelihood data is here:
https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood
software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also
see companion papers Qu et al and MacCrann et al. Mass maps will be released
when papers are publishe
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
CMB-S4---the next-generation ground-based cosmic microwave background (CMB)
experiment---is set to significantly advance the sensitivity of CMB
measurements and enhance our understanding of the origin and evolution of the
Universe, from the highest energies at the dawn of time through the growth of
structure to the present day. Among the science cases pursued with CMB-S4, the
quest for detecting primordial gravitational waves is a central driver of the
experimental design. This work details the development of a forecasting
framework that includes a power-spectrum-based semi-analytic projection tool,
targeted explicitly towards optimizing constraints on the tensor-to-scalar
ratio, , in the presence of Galactic foregrounds and gravitational lensing
of the CMB. This framework is unique in its direct use of information from the
achieved performance of current Stage 2--3 CMB experiments to robustly forecast
the science reach of upcoming CMB-polarization endeavors. The methodology
allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments given a desired
scientific goal. To form a closed-loop process, we couple this semi-analytic
tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several
independent analysis methods. We document multiple rounds of forecasts for
CMB-S4 using this process and the resulting establishment of the current
reference design of the primordial gravitational-wave component of the Stage-4
experiment, optimized to achieve our science goals of detecting primordial
gravitational waves for at greater than , or, in the
absence of a detection, of reaching an upper limit of at CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note:
text overlap with arXiv:1907.0447
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
The Atacama Cosmology Telescope: A measurement of the DR6 CMB lensing power spectrum and its implications for structure growth
We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2 of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43σ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude of A lens = 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model and A lens = 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBL≡σ8Ωm/0.30.25 of S8CMBL=0.818±0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813±0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshifts z ∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarily z ∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts
- …