13 research outputs found
The Inter-Mammary Sticky Roll: A Novel Technique for Securing a Doppler Ultrasonic Probe to the Precordium for Venous Air Embolism Detection.
Venous air embolism is a devastating and potentially life-threatening complication that can occur during neurosurgical procedures. We report the development and use of the "inter-mammary sticky roll,"Â a technique to reliably secure a precordial Doppler ultrasonic probe to the chest wall during neurosurgical cases that require lateral decubitus positioning. We have found that this noninvasive technique is safe, and effectively facilitates a constant Doppler signal with no additional risk to the patient
Perioperative Vision Loss in Cervical Spinal Surgery.
STUDY DESIGN: Retrospective multicenter case series.
OBJECTIVE: To assess the rate of perioperative vision loss following cervical spinal surgery.
METHODS: Medical records for 17â625 patients from 21 high-volume surgical centers from the AOSpine North America Clinical Research Network who received cervical spine surgery (levels from C2 to C7) between January 1, 2005, and December 31, 2011, inclusive, were reviewed to identify occurrences of vision loss following surgery.
RESULTS: Of the 17â625 patients in the registry, there were 13â946 patients assessed for the complication of blindness. There were 9591 cases that involved only anterior surgical approaches; the remaining 4355 cases were posterior and/or circumferential fusions. There were no cases of blindness or vision loss in the postoperative period reported during the sampling period.
CONCLUSIONS: Perioperative vision loss following cervical spinal surgery is exceedingly rare
The Inter-Mammary Sticky Roll: A Novel Technique for Securing a Doppler Ultrasonic Probe to the Precordium for Venous Air Embolism Detection
Venous air embolism is a devastating and potentially life-threatening complication that can occur during neurosurgical procedures. We report the development and use of the âinter-mammary sticky roll,â a technique to reliably secure a precordial Doppler ultrasonic probe to the chest wall during neurosurgical cases that require lateral decubitus positioning. We have found that this noninvasive technique is safe, and effectively facilitates a constant Doppler signal with no additional risk to the patient
Recommended from our members
Lateral mass screw stimulation thresholds in posterior cervical instrumentation surgery: a predictor of medial deviation.
OBJECTIVE Normative data exists for stimulus-evoked pedicle screw electromyography (EMG) current thresholds in the lumbar spine, and is routinely referenced during spine surgeries to detect a screw breach, prevent injury of neural elements, and ensure the most biomechanically sound instrumentation construct. To date, similar normative data for cervical lateral mass screws is limited, thus the utility of lateral mass screw testing remains unclear. To address this disparity, in this study the authors describe cumulative lateral mass screw stimulation threshold data in patients undergoing posterior cervical instrumentation with lateral mass screws. These data are correlated with screw placement on postoperative imaging, and a novel correlation is discovered with direct clinical implications. METHODS Using a ball-tip probe, 154 lateral mass screws in 21 patients were electrically tested intraoperatively. In each case, for each screw, the lowest (or threshold) current at which the first polyphasic stimulus-evoked EMG response was reproducibly observed by a neurophysiologist was recorded. All patients underwent postoperative CT. Screw position within the lateral mass was first measured in the axial and sagittal planes for each lateral mass screw using the CT images. Screw placement was also evaluated by 2 independent physicians, blinded to current threshold data, on a binary scale of acceptability. The predictive capacity of screw EMG threshold data was evaluated via multivariable regression analyses and receiver operating characteristic (ROC) analyses. Predictive capacity was examined with respect to screw position within the lateral mass, as well as screw acceptability. RESULTS Lateral mass screw EMG thresholds did not appear to differ significantly for screws considered "acceptable" versus "unacceptable" according to the radiographic criteria. Accordingly, ROC analysis confirmed that EMG current threshold data were of minimal utility in predicting screw radiographic acceptability. However, EMG threshold was significantly predictive of screw medial distance from the spinal canal. A screw stimulating below 7.5 mA correctly identified a screw as being within 2 mm of the spinal canal with 75% sensitivity and 92% specificity (positive predictive value 20%, negative predictive value 99.3%), independent of its distance relative to other lateral mass landmarks. EMG current threshold was not significantly predictive of screw deviation in the superior or inferior directions, and was inversely predictive of screw deviations in the lateral direction. CONCLUSIONS In the context of uncertainty regarding the utility of cervical lateral mass EMG current threshold data, this study found that EMG current thresholds correspond significantly, and exclusively, with screw distance from the spinal canal. This association appears independent of other criteria for screw misplacement. As such, the authors recommend that EMG current thresholds be referenced in the case of a suspected medial breach as an effective means to rule out screw placement too medial to the spinal canal
APC7 mediates ubiquitin signaling in constitutive heterochromatin in the developing mammalian brain
Neurodevelopmental cognitive disorders provide insights into mechanisms of human brain development. Here, we report an intellectual disability syndrome caused by the loss of APC7, a core component of the E3 ubiquitin ligase anaphase promoting complex (APC). In mechanistic studies, we uncover a critical role for APC7 during the recruitment and ubiquitination of APC substrates. In proteomics analyses of the brain from mice harboring the patient-specific APC7 mutation, we identify the chromatin-associated protein Ki-67 as an APC7-dependent substrate of the APC in neurons. Conditional knockout of the APC coactivator protein Cdh1, but not Cdc20, leads to the accumulation of Ki-67 protein in neurons in vivo, suggesting that APC7 is required for the function of Cdh1-APC in the brain. Deregulated neuronal Ki-67 upon APC7 loss localizes predominantly to constitutive heterochromatin. Our findings define an essential function for APC7 and Cdh1-APC in neuronal heterochromatin regulation, with implications for understanding human brain development and disease
Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO
International audienceDuring their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100ââMâ, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93ââGpcâ3âyrâ1 in comoving units at the 90%Â confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits