2,735 research outputs found

    Atmospheric refractivity effects on mid-infrared ELT adaptive optics

    Full text link
    We discuss the effect of atmospheric dispersion on the performance of a mid-infrared adaptive optics assisted instrument on an extremely large telescope (ELT). Dispersion and atmospheric chromaticity is generally considered to be negligible in this wavelength regime. It is shown here, however, that with the much-reduced diffraction limit size on an ELT and the need for diffraction-limited performance, refractivity phenomena should be carefully considered in the design and operation of such an instrument. We include an overview of the theory of refractivity, and the influence of infrared resonances caused by the presence of water vapour and other constituents in the atmosphere. `Traditional' atmospheric dispersion is likely to cause a loss of Strehl only at the shortest wavelengths (L-band). A more likely source of error is the difference in wavelengths at which the wavefront is sensed and corrected, leading to pointing offsets between wavefront sensor and science instrument that evolve with time over a long exposure. Infrared radiation is also subject to additional turbulence caused by the presence of water vapour in the atmosphere not seen by visible wavefront sensors, whose effect is poorly understood. We make use of information obtained at radio wavelengths to make a first-order estimate of its effect on the performance of a mid-IR ground-based instrument. The calculations in this paper are performed using parameters from two different sites, one `standard good site' and one `high and dry site' to illustrate the importance of the choice of site for an ELT.Comment: 11 pages, to be published in SPIE Proceedings vol. 7015, Adaptive Optics Systems, eds. N. Hubin, C.E. Max and P.L. Wizinowich, 200

    PAH Strength and the Interstellar Radiation Field around the Massive Young Cluster NGC3603

    Full text link
    We present spatial distribution of polycyclic aromatic hydrocarbons and ionized gas within the Galactic giant HII region NGC3603. Using the IRS instrument on board the Spitzer Space Telescope, we study in particular the PAH emission features at ~5.7, 6.2, 7.7, 8.6, and 11.3um, and the [ArII] 6.99um, [NeII] 12.81um, [ArIII] 8.99um, and [SIV] 10.51um forbidden emission lines. The observations probe both ionized regions and photodissociation regions. Silicate emission is detected close to the central cluster while silicate absorption is seen further away. We find no significant variation of the PAH ionization fraction across the whole region. The emission of very small grains lies closer to the central stellar cluster than emission of PAHs. The PAH/VSG ratio anticorrelates with the hardness of the interstellar radiation field suggesting a destruction mechanism of the molecules within the ionized gas, as shown for low-metallicity galaxies by Madden et al. (2006).Comment: Accepted for publication in ApJ. Corrected typo

    Mid-Infrared Instrumentation for the European Extremely Large Telescope

    Full text link
    MIDIR is the proposed thermal/mid-IR imager and spectrograph for the European Extremely Large Telescope (E-ELT). It will cover the wavelength range of 3 to at least 20 microns. Designed for diffraction-limited performance over the entire wavelength range, MIDIR will require an adaptive optics system; a cryogenically cooled system could offer optimal performance in the IR, and this is a critical aspect of the instrument design. We present here an overview of the project, including a discussion of MIDIR's science goals and a comparison with other infrared (IR) facilities planned in the next decade; top level requirements derived from these goals are outlined. We describe the optical and mechanical design work carried out in the context of a conceptual design study, and discuss some important issues to emerge from this work, related to the design, operation and calibration of the instrument. The impact of telescope optical design choices on the requirements for the MIDIR instrument is demonstrated.Comment: for publication in SPIE Proceedings vol. 6692, Cryogenic Optical Systems and Instrumentation XII, eds. J.B. Heaney and L.G. Burriesci, San Diego, Aug 200

    Elemental Abundances of Blue Compact Dwarfs from mid-IR Spectroscopy with Spitzer

    Get PDF
    We present a study of elemental abundances in a sample of thirteen Blue Compact Dwarf (BCD) galaxies, using the \sim10--37μ\mum high resolution spectra obtained with Spitzer/IRS. We derive the abundances of neon and sulfur for our sample using the infrared fine-structure lines probing regions which may be obscured by dust in the optical and compare our results with similar infrared studies of starburst galaxies from ISO. We find a good correlation between the neon and sulfur abundances, though sulfur is under-abundant relative to neon with respect to the solar value. A comparison of the elemental abundances (neon, sulfur) measured from the infrared data with those derived from the optical (neon, sulfur, oxygen) studies reveals a good overall agreement for sulfur, while the infrared derived neon abundances are slightly higher than the optical values. This indicates that either the metallicities of dust enshrouded regions in BCDs are similar to the optically accessible regions, or that if they are different they do not contribute substantially to the total infrared emission of the host galaxy.Comment: 11 pages, 6 figures, accepted by Ap

    Polynomials with roots mod p for all primes p

    Get PDF

    Wavelength calibration of the JWST-MIRI medium resolution spectrometer

    Full text link
    We present the wavelength and spectral resolution characterisation of the Integral Field Unit (IFU) Medium Resolution Spectrometer for the Mid-InfraRed Instrument (MIRI), to fly onboard the James Webb Space Telescope in 2014. We use data collected using the Verification Model of the instrument and develop an empirical method to calibrate properties such as wavelength range and resolving power in a portion of the spectrometer's full spectral range (5-28 microns). We test our results against optical models to verify the system requirements and combine them with a study of the fringing pattern in the instrument's detector to provide a more accurate calibration. We show that MIRI's IFU spectrometer will be able to produce spectra with a resolving power above R=2800 in the wavelength range 6.46-7.70 microns, and that the unresolved spectral lines are well fitted by a Gaussian profile.Comment: 12 pages, submitted to SPIE Proceedings vol. 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wav
    corecore