728 research outputs found

    Advanced Testing Chain Supporting the Validation of Smart Grid Systems and Technologies

    Full text link
    New testing and development procedures and methods are needed to address topics like power system stability, operation and control in the context of grid integration of rapidly developing smart grid technologies. In this context, individual testing of units and components has to be reconsidered and appropriate testing procedures and methods need to be described and implemented. This paper addresses these needs by proposing a holistic and enhanced testing methodology that integrates simulation/software- and hardware-based testing infrastructure. This approach presents the advantage of a testing environment, which is very close to f i eld testing, includes the grid dynamic behavior feedback and is risks-free for the power system, for the equipment under test and for the personnel executing the tests. Furthermore, this paper gives an overview of successful implementation of the proposed testing approach within different testing infrastructure available at the premises of different research institutes in Europe.Comment: 2018 IEEE Workshop on Complexity in Engineering (COMPENG

    Determination of Stator End Winding Inductance of Large Induction Machines: Comparison Between Analytics, Numerics, and Measurements

    Get PDF
    Knowledge of the end winding inductance of electrical machines is decisive for calculating their operating performance. In this article, two different approaches to analytically calculate the stator end winding inductance of large induction machines are discussed. The first method is based on the exact replication of the 3D conductor geometry using serially connected straight filaments, where the inductances are calculated by solving Neumann’s integral. In the second method, the end winding flux is resolved into components excited by the axial and circumferential end winding magnetomotive force, resulting in a far simpler geometrical model. In both cases, end face effects are taken into account by adopting the method of images. The analytical approaches are compared to the known analytical calculation method proposed by Alger [1]. In addition, the stator end winding inductance is computed by means of 3D finite-element analysis. Using experimental validation, it is shown that both the analytical and numerical results reasonably correlate with removed rotor inductance measurements taken for several induction machines with different rated powers and frame sizes, if the permeability of the laminated core is taken into consideration

    Discovery of the Pre-Main Sequence Population of the Stellar Association LH 95 in the Large Magellanic Cloud with Hubble Space Telescope ACS Observations

    Full text link
    We report the discovery of an extraordinary number of pre-main sequence (PMS) stars in the vicinity of the stellar association LH 95 in the Large Magellanic Cloud (LMC). Using the {\em Advanced Camera for Surveys} on-board the {\em Hubble} Space Telescope in wide-field mode we obtained deep high-resolution imaging of the main body of the association and of a nearby representative LMC background field. These observations allowed us to construct the color-magnitude diagram (CMD) of the association in unprecedented detail, and to decontaminate the CMD for the average LMC stellar population. The most significant result is the direct detection of a substantial population of PMS stars and their clustering properties with respect to the distribution of the higher mass members of the association. Although LH 95 represents a rather modest star forming region, our photometry, with a detection limit VV \lsim 28 mag, reveals in its vicinity more than 2,500 PMS stars with masses down to ∼0.3\sim 0.3 M{\solar}. Our observations offer, thus, a new perspective of a typical LMC association: The stellar content of LH 95 is found to extend from bright OB stars to faint red PMS stars, suggesting a fully populated Initial Mass Function (IMF) from the massive blue giants down to the sub-solar mass regime.Comment: Accepted for Publication in ApJ Letters - 4 Pages ApJ paper format - 3 figures in low-resolution/grayscal

    Efficient Control of Active Transformers for Increasing the PV Hosting Capacity of LV Grids

    Get PDF
    The increased penetration of grid-connected photovoltaic (PV) systems in low-voltage (LV) grids creates concerns about overvoltage in these grids. The proposed methods to prevent overvoltage, such as reactive power absorption by PV inverters and active power management of customers, focus on decreasing the voltage rise along LV feeders, and the potential of active medium-voltage to low-voltage (MV/LV) transformers for overvoltage prevention has not been thoroughly investigated. This paper presents the application of active MV/LV transformers for increasing the PV hosting capacity of LV grids. The potential interferences between the operation of active transformers and the reactive power absorption by PV inverters are investigated, and a voltage droop control approach is proposed for the efficient control of these transformers during high PV generation periods. The proposed method can potentially increase the PV hosting capacity of the grid, while eliminating the need for a complex and centralized controller. The voltages of specific locations or the grid state estimations provide adequate data for adjustments of the droop parameters. The simulations and field test results associated with the implementation of the proposed method to a newly developed active LV grid with high PV penetration in Felsberg, Germany, confirm the efficiency of the proposed method

    Climate change and mixed forests: how do altered survival probabilities impact economically desirable species proportions of Norway spruce and European beech?

    Get PDF
    International audienceKey message Economic consequences of altered survival probabilities under climate change should be considered for regeneration planning in Southeast Germany. Findings suggest that species compositions of mixed stands obtained from continuous optimization may buffer but not completely mitigate economic consequences. Mixed stands of Norway spruce (Picea abiesL. Karst.) and European beech (Fagus sylvaticaL.) (considering biophysical interactions between tree species) were found to be more robust, against both perturbations in survival probabilities and economic input variables, compared to block mixtures (excluding biophysical interactions).ContextClimate change is expected to increase natural hazards in European forests. Uncertainty in expected tree mortality and resulting potential economic consequences complicate regeneration decisions.AimsThis study aims to analyze the economic consequences of altered survival probabilities for mixing Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) under different climate change scenarios. We investigate whether management strategies such as species selection and type of mixture (mixed stands vs. block mixture) could mitigate adverse financial effects of climate change.MethodsThe bio-economic modelling approach combines a parametric survival model with modern portfolio theory. We estimate the economically optimal species mix under climate change, accounting for the biophysical and economic effects of tree mixtures. The approach is demonstrated using an example from Southeast Germany.ResultsThe optimal tree species mixtures under simulated climate change effects could buffer but not completely mitigate undesirable economic consequences. Even under optimally mixed forest stands, the risk-adjusted economic value decreased by 28%. Mixed stands economically outperform block mixtures for all climate scenarios.ConclusionOur results underline the importance of mixed stands to mitigate the economic consequences of climate change. Mechanistic bio-economic models help to understand consequences of uncertain input variables and to design purposeful adaptation strategies

    Asynchronous Integration of Real-Time Simulators for HIL-based Validation of Smart Grids

    Full text link
    As the landscape of devices that interact with the electrical grid expands, also the complexity of the scenarios that arise from these interactions increases. Validation methods and tools are typically domain specific and are designed to approach mainly component level testing. For this kind of applications, software and hardware-in-the-loop based simulations as well as lab experiments are all tools that allow testing with different degrees of accuracy at various stages in the development life-cycle. However, things are vastly different when analysing the tools and the methodology available for performing system-level validation. Until now there are no available well-defined approaches for testing complex use cases involving components from different domains. Smart grid applications would typically include a relatively large number of physical devices, software components, as well as communication technology, all working hand in hand. This paper explores the possibilities that are opened in terms of testing by the integration of a real-time simulator into co-simulation environments. Three practical implementations of such systems together with performance metrics are discussed. Two control-related examples are selected in order to show the capabilities of the proposed approach.Comment: IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Societ

    Epithelial-Mesenchymal Transition Induces Endoplasmic-Reticulum-Stress Response in Human Colorectal Tumor Cells

    Get PDF
    Tumor cells are stressed by unfavorable environmental conditions like hypoxia or starvation. Driven by the resulting cellular stress tumor cells undergo epithelial-mesenchymal transition. Additionally, cellular stress is accompanied by endoplasmic reticulum-stress which induces an unfolded protein response. It is unknown if epithelial-mesenchymal transition and endoplasmic reticulum-stress are occurring as independent parallel events or if an interrelationship exists between both of them. Here, we show that in colorectal cancer cells endoplasmic reticulum-stress depends on the induction of ZEB-1, which is a main factor of epithelial-mesenchymal transition. In the absence of ZEB-1 colorectal cancer cells cannot mount endoplasmic reticulum-stress as a reaction on cellular stress situations like hypoxia or starvation. Thus, our data suggest that there is a hierarchy in the development of cellular stress which starts with the presence of environmental stress that induces epithelial-mesenchymal transition which allows finally endoplasmic reticulum-stress. This finding highlights the central role of epithelial-mesenchymal transition during the process of tumorigenesis as epithelial-mesenchymal transition is also associated with chemoresistance and cancer stemness. Consequently, endoplasmic reticulum-stress might be a well suited target for chemotherapy of colorectal cancers
    • …
    corecore