1,351 research outputs found

    Incremental verification and synthesis of discrete-event systems guided by counter-examples

    Get PDF
    This article presents new approaches to system verification and synthesis based on subsystem verification and the novel combined use of counterexamples and heuristics to identify suitable subsystems incrementally. The scope of safety properties considered is limited to behavioral inclusion and controllability. The verification examples considered provide a comparison of the approaches presented with straightforward state exploration and an understanding of their applicability in an industrial context

    Analysis of the Caddisflies (Trichoptera) of the Manistee River Watershed, Michigan

    Get PDF
    We document 134 caddisfly species and their seasonal and habitat affinities based on 93 samples collected from 26 sites throughout the Manistee River watershed in the lower peninsula of Michigan from May through September, 2010. Eleven of these species: Banksiola dossuaria (Say), Cheumatopsyche aphanta Ross, Cheumatopsyche pasella Ross, Hydroptila xera Ross, Ironoquia lyrata (Ross), Lepidostoma vernale (Banks), Neotrichia vibrans Ross, Nyctiophylax affinis (Banks), Oxyethira aeola Ross, Oxyethira rivicola Blickle and Morse, and Polycentropus timesis (Denning) are reported from Michigan for the first time. More than 85% of species reached peak adult abundance during June or July, although a few species reached peak abundance or emerged exclusively during the other months. Overall species richness reached its peak during early July, with a smaller peak of unique species in September. Caddisfly faunas in lakes, small streams, medium rivers, and large rivers were all distinct from each other, suggesting that the overall watershed is following patterns predicted by the River Continuum Concept. It is likely that the Michigan caddisfly fauna contains considerably more species than what is currently known

    Study of the Feasibility of an X-Ray Free Electron Laser with a 15 GeV CLIC Beam

    Get PDF
    This note presents a study of the feasibility of a Free Electron Laser (FEL) using an electron beam from the Compact Linear Collider (CLIC). We first show that, with the nominal CLIC layout, the energy spread at 15 GeV would be too large to allow FEL saturation in an undulator of reasonable length. An alternative scheme was studied, with a dedicated source, with a by-pass of the damping rings and with magnetic compression between the various acceleration stages. With this scheme, the energy spread of the CLIC beam can be reduced from 1.5% to 0.1%, but the emittance is much larger and, although the power gain is better than in the nominal case, FEL saturation is still not reached. We show that the energy spread or the transverse emittance would have to be reduced by another order of magnitude in order to obtain FEL saturation

    Compositional nonblocking verification with always enabled events and selfloop-only events

    Get PDF
    This paper proposes to improve compositional nonblocking verification through the use of always enabled and selfloop-only events. Compositional verification involves abstraction to simplify parts of a system during verification. Normally, this abstraction is based on the set of events not used in the remainder of the system, i.e., in the part of the system not being simplified. Here, it is proposed to exploit more knowledge about the system and abstract events even though they are used in the remainder of the system. Abstraction rules from previous work are generalised, and experimental results demonstrate the applicability of the resulting algorithm to verify several industrial-scale discrete event system models, while achieving better state-space reduction than before

    Measurements of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of inclusive spectra and mean multiplicities of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c (s=\sqrt{s} = 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter

    Measurements of π±\pi^\pm, K±K^\pm, KS0K^0_S, Λ\Lambda and proton production in proton-carbon interactions at 31 GeV/cc with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of π±\pi^\pm, K±K^\pm, p, KS0K^0_S and Λ\Lambda are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the final published versio
    corecore