23 research outputs found

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    A novel packaging system for the generation of helper-free oncolytic MVM vector stocks

    No full text
    MVM-based autonomous parvoviral vectors have been shown to target the expression of heterologous genes in neoplastic cells and are therefore of interest for cancer gene therapy. The traditional method for production of parvoviral vectors requires the cotransfection of vector and helper plasmids into MVM-permissive cell lines, but recombination between the cotransfected plasmids invariably gives rise to vector stocks that are heavily contaminated with wild-type MVM. Therefore, to minimise recombination between the vector and helper genomes we have utilised a cell line in which the MVM helper functions are expressed inducibly from a modified MVM genome that is stably integrated into the host cell chromosome. Using this MVM packaging cell line, we could reproducibly generate MVM vector stocks that contained no detectable helper virus.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Autonomous parvovirus vectors: Preventing the generation of wild-type or replication-competent virus

    No full text
    SCOPUS: re.jFLWINinfo:eu-repo/semantics/publishe

    NS-1 and NS-2 proteins may act synergistically in the cytopathogenicity of parvovirus MVMp

    No full text
    The interaction of parvovirus minute virus of mice (prototype strain, MVMp) with simian virus 40 (SV40)-transformed human cells (NB-E) was investigated by means of transfection with MVMp molecular clones derived from the infectious recombinant plasmid (pMM984). pMM984 inhibits stable transformation of NB-E cells to geneticin resistance (G418(R)) upon cotransfection with the selectable pSV2neo plasmid. We show here that this inhibition is not merely caused by a repression of marker gene expression from the SV40 early region promoter in pSV2neo and rather is likely to reflect the cytotoxic action of the parvovirus. Starting from plasmid pMM984, defined mutations were introduced into the genome of MVMp and more particularly into sequences coding for the NS-1 and/or NS-2 nonstructural proteins. In this way we could show that the NS-1 protein is necessary for the inhibition of transformation to G418(R) and that the NS-2 protein acts synergistically to enhance this effect. Moreover, results obtained with different viral mutants indicate that the inhibitory action of NS-1 on stable transformation can be dissociated from the ability of this protein both to transactivate the parvoviral p39 promoter of the capsid protein-encoding region and to drive parvoviral DNA amplification. Altogether these data point to a probable direct toxicity of MVMp nonstructural proteins for permissive host cells.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A novel method for the titration of recombinant virus stocks by ELISPOT assay

    No full text
    The development of vectors for gene therapy requires the definition of quality control parameters such as titration, contamination, transduction efficiency and biological effects in defined model systems. For most viral vectors, the classical titration by plaque formation is not applicable, because vectors are defective for replication and packaging cell lines are not always available. In particular, for vectors derived from the autonomous parvovirus MVM(p), the titration method used currently is based on the amplification of the viral genome inside an infected cell, which can then be revealed with a specific radioactive probe (J. Virol. 63 (1989) 1023). In situ hybridization allows to titrate wild-type virus as well as vectors, using probes that are specific for the substituted viral genes or for the transgene, respectively. This method is, however, time consuming, making the simultaneous titration of large numbers of samples difficult. The use of a radioactive probe requires an adequate facility. An ELISPOT method that allows for rapid titration of up to 23 vector stocks in one 96 well dish was devised. This method is based on the actual expression of the transgene. Compared to in situ hybridization, titers obtained by the ELISPOT method were in general equivalent or higher. However, for some vector stocks the ELISPOT titers were repeatedly lower, indicating that in situ hybridization does not give an accurate measure of transducing units. Our model system is recombinant parvovirus MVM expressing human IL2, but the method should be adaptable to other vectors expressing transgenes that are secreted and for which antibodies are available. © 2003 Elsevier Science B.V. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Influence of sequence and size of DNA on packaging efficiency of parvovirus MVM-based vectors

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Modulation of the metabolism and adverse effects of benzo[a]pyrene by a specific antibody: A novel host factor in environmental carcinogenesis?

    No full text
    The influence of specific antibodies on molecular and cellular mechanisms of activation, detoxification and biological activity of the ubiquitous carcinogen benzo[a]pyrene (B[a]P) was investigated using a monoclonal antibody. The antibody was shown to decrease cellular uptake and metabolic activation of B[a]P as demonstrated by higher recovery of unmetabolized B[a]P and decreased formation of end-point phenol metabolites in two types of target cells. Furthermore, strong antibody reactivity with 7,8-diol-B[a]P provided a second chance for interrupting metabolic activation by sequestration of this intermediate metabolite in the extracellular space. The biological relevance of B[a]P and 7,8-diol-B[a]P redistribution by antibody was demonstrated by reversion of B[a]P-induced inhibition of proliferation of human peripheral blood lymphocytes and by inhibition of CYP 1A1 induction in HepG2 cells. Remarkably, the antibody was still protective against B[a]P-induced immunotoxicity even after delayed addition, suggesting a more important role of metabolites in immunotoxicity than has been appreciated so far. Although B[a]P is activated to 7,8-diol-B[a]P in the same cells that are inhibited by this metabolite, the antibody completely restored lymphocyte proliferation indicating that extracellular trapping of the 7,8-diol-B[a]P is biologically highly effective. Thus, repartitioning of both B[a]P and its metabolites by the antibody may reduce their effective concentration in susceptible target organs and therefore relieve overloaded DNA repair mechanisms and inhibit carcinogen-induced P450 induction. These in vitro data also suggest that a natural or prophylactic antibody response against carcinogens may be associated with a reduced risk of cancer. © Oxford University Press 2005; all rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore