4,532 research outputs found

    Mean-field transport in stratified and/or rotating turbulence

    Full text link
    We investigate the mean electromotive force in the kinematic framework, that is, ignoring the back-reaction of the magnetic field on the fluid velocity, under the assumption of axisymmetric turbulence determined by the presence of either rotation, density stratification, or both. We use an analogous approach for the mean passive scalar flux. As an alternative to convection, we consider forced turbulence in an isothermal layer. When using standard ansatzes, the mean magnetic transport is then determined by nine, and the mean passive scalar transport by four coefficients. We give results for all these transport coefficients. We use the test-field method and the test-scalar method, where transport coefficients are determined by solving sets of equations with properly chosen mean magnetic fields or mean scalars. These methods are adapted to mean fields which may depend on all three space coordinates. We find the anisotropy of turbulent diffusion to be moderate in spite of rapid rotation or strong density stratification. Contributions to the mean electromotive force determined by the symmetric part of the gradient tensor of the mean magnetic field, which were ignored in several earlier investigations, turn out to be important. In stratified rotating turbulence, the α\alpha effect is strongly anisotropic, suppressed along the rotation axis on large length scales, but strongly enhanced at intermediate length scales. Also the \OO\times\meanJJ effect is enhanced at intermediate length scales. The turbulent passive scalar diffusivity is typically almost twice as large as the turbulent magnetic diffusivity. Both magnetic and passive scalar diffusion are slightly enhanced along the rotation axis, but decreased if there is gravity.Comment: 12 pages, 8 figures, A&A, publishe

    Magnetic helicity in stellar dynamos: new numerical experiments

    Get PDF
    The theory of large scale dynamos is reviewed with particular emphasis on the magnetic helicity constraint in the presence of closed and open boundaries. In the presence of closed or periodic boundaries, helical dynamos respond to the helicity constraint by developing small scale separation in the kinematic regime, and by showing long time scales in the nonlinear regime where the scale separation has grown to the maximum possible value. A resistively limited evolution towards saturation is also found at intermediate scales before the largest scale of the system is reached. Larger aspect ratios can give rise to different structures of the mean field which are obtained at early times, but the final saturation field strength is still decreasing with decreasing resistivity. In the presence of shear, cyclic magnetic fields are found whose period is increasing with decreasing resistivity, but the saturation energy of the mean field is in strong super-equipartition with the turbulent energy. It is shown that artificially induced losses of small scale field of opposite sign of magnetic helicity as the large scale field can, at least in principle, accelerate the production of large scale (poloidal) field. Based on mean field models with an outer potential field boundary condition in spherical geometry, we verify that the sign of the magnetic helicity flux from the large scale field agrees with the sign of alpha. For solar parameters, typical magnetic helicity fluxes lie around 10^{47} Mx^2 per cycle.Comment: 23 pages, 27 figures, Astron. Nach

    Kinematic alpha effect in isotropic turbulence simulations

    Full text link
    Using numerical simulations at moderate magnetic Reynolds numbers up to 220 it is shown that in the kinematic regime, isotropic helical turbulence leads to an alpha effect and a turbulent diffusivity whose values are independent of the magnetic Reynolds number, \Rm, provided \Rm exceeds unity. These turbulent coefficients are also consistent with expectations from the first order smoothing approximation. For small values of \Rm, alpha and turbulent diffusivity are proportional to \Rm. Over finite time intervals meaningful values of alpha and turbulent diffusivity can be obtained even when there is small-scale dynamo action that produces strong magnetic fluctuations. This suggests that small-scale dynamo-generated fields do not make a correlated contribution to the mean electromotive force.Comment: Accepted for publication in MNRAS Letter

    Minimal tau approximation and simulations of the alpha effect

    Full text link
    The validity of a closure called the minimal tau approximation (MTA), is tested in the context of dynamo theory, wherein triple correlations are assumed to provide relaxation of the turbulent electromotive force. Under MTA, the alpha effect in mean field dynamo theory becomes proportional to a relaxation time scale multiplied by the difference between kinetic and current helicities. It is shown that the value of the relaxation time is positive and, in units of the turnover time at the forcing wavenumber, it is of the order of unity. It is quenched by the magnetic field -- roughly independently of the magnetic Reynolds number. However, this independence becomes uncertain at large magnetic Reynolds number. Kinetic and current helicities are shown to be dominated by large scale properties of the flow.Comment: 11 pages, 12 figures, accepted by A&

    Enhancement of small-scale turbulent dynamo by large-scale shear

    Full text link
    Small-scale dynamos are ubiquitous in a broad range of turbulent flows with large-scale shear, ranging from solar and galactic magnetism to accretion disks, cosmology and structure formation. Using high-resolution direct numerical simulations we show that in non-helically forced turbulence with zero mean magnetic field, large-scale shear supports small-scale dynamo action, i.e., the dynamo growth rate increases with shear and shear enhances or even produces turbulence, which, in turn, further increases the dynamo growth rate. When the production rates of turbulent kinetic energy due to shear and forcing are comparable, we find scalings for the growth rate γ\gamma of the small-scale dynamo and the turbulent velocity urmsu_{\rm rms} with shear rate SS that are independent of the magnetic Prandtl number: γS\gamma \propto |S| and urmsS2/3u_{\rm rms} \propto |S|^{2/3}. For large fluid and magnetic Reynolds numbers, γ\gamma, normalized by its shear-free value, depends only on shear. Having compensated for shear-induced effects on turbulent velocity, we find that the normalized growth rate of the small-scale dynamo exhibits the scaling, γ~S2/3\widetilde{\gamma}\propto |S|^{2/3}, arising solely from the induction equation for a given velocity field.Comment: Improved version submitted to the Astrophysical Journal Letters, 6 pages, 5 figure

    Decay of helical and non-helical magnetic knots

    Full text link
    We present calculations of the relaxation of magnetic field structures that have the shape of particular knots and links. A set of helical magnetic flux configurations is considered, which we call nn-foil knots of which the trefoil knot is the most primitive member. We also consider two nonhelical knots; namely, the Borromean rings as well as a single interlocked flux rope that also serves as the logo of the Inter-University Centre for Astronomy and Astrophysics in Pune, India. The field decay characteristics of both configurations is investigated and compared with previous calculations of helical and nonhelical triple-ring configurations. Unlike earlier nonhelical configurations, the present ones cannot trivially be reduced via flux annihilation to a single ring. For the nn-foil knots the decay is described by power laws that range form t2/3t^{-2/3} to t1/3t^{-1/3}, which can be as slow as the t1/3t^{-1/3} behavior for helical triple-ring structures that were seen in earlier work. The two nonhelical configurations decay like t1t^{-1}, which is somewhat slower than the previously obtained t3/2t^{-3/2} behavior in the decay of interlocked rings with zero magnetic helicity. We attribute the difference to the creation of local structures that contain magnetic helicity which inhibits the field decay due to the existence of a lower bound imposed by the realizability condition. We show that net magnetic helicity can be produced resistively as a result of a slight imbalance between mutually canceling helical pieces as they are being driven apart. We speculate that higher order topological invariants beyond magnetic helicity may also be responsible for slowing down the decay of the two more complicated nonhelical structures mentioned above.Comment: 11 pages, 27 figures, submitted to Phys. Rev.

    Fanning out of the ff-mode in presence of nonuniform magnetic fields

    Full text link
    We show that in the presence of a harmonically varying magnetic field the fundamental or ff-mode in a stratified layer is altered in such a way that it fans out in the diagnostic kωk\omega diagram, but with mode power also within the fan. In our simulations, the surface is defined by a temperature and density jump in a piecewise isothermal layer. Unlike our previous work (Singh et al. 2014) where a uniform magnetic field was considered, we employ here a nonuniform magnetic field together with hydromagnetic turbulence at length scales much smaller than those of the magnetic fields. The expansion of the ff-mode is stronger for fields confined to the layer below the surface. In some of those cases, the kωk\omega diagram also reveals a new class of low frequency vertical stripes at multiples of twice the horizontal wavenumber of the background magnetic field. We argue that the study of the ff-mode expansion might be a new and sensitive tool to determining subsurface magnetic fields with longitudinal periodicity.Comment: 6 pages, 4 figures, submitted to Astrophysical Journal Letter

    The negative magnetic pressure effect in stratified turbulence

    Full text link
    While the rising flux tube paradigm is an elegant theory, its basic assumptions, thin flux tubes at the bottom of the convection zone with field strengths two orders of magnitude above equipartition, remain numerically unverified at best. As such, in recent years the idea of a formation of sunspots near the top of the convection zone has generated some interest. The presence of turbulence can strongly enhance diffusive transport mechanisms, leading to an effective transport coefficient formalism in the mean-field formulation. The question is what happens to these coefficients when the turbulence becomes anisotropic due to a strong large-scale mean magnetic field. It has been noted in the past that this anisotropy can also lead to highly non-diffusive behaviour. In the present work we investigate the formation of large-scale magnetic structures as a result of a negative contribution of turbulence to the large-scale effective magnetic pressure in the presence of stratification. In direct numerical simulations of forced turbulence in a stratified box, we verify the existence of this effect. This phenomenon can cause formation of large-scale magnetic structures even from initially uniform large-scale magnetic field.Comment: 5 pages, 2 figures, submitted conference proceedings IAU symposium 273 "Physics of Sun and Star Spots

    Turbulent magnetic pressure instability in stratified turbulence

    Full text link
    A reduction of total mean turbulent pressure due to the presence of magnetic fields was previously shown to be a measurable effect in direct numerical simulations. However, in the studied parameter regime the formation of large-scale structures, as anticipated from earlier mean-field simulations, was not found. An analysis of the relevant mean-field parameter dependency and the parameter domain of interest is conducted in order to clarify this apparent discrepancy.Comment: 3 pages, 2 figures, proceedings of IAU Symp. 274, Advances in Plasma Astrophysics, ed. A. Bonanno, E. de Gouveia dal Pino and A. Kosoviche
    corecore