128 research outputs found

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as β€œphenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon

    Rapid and High-Throughput Detection of Highly Pathogenic Bacteria by Ibis PLEX-ID Technology

    Get PDF
    In this manuscript, we describe the identification of highly pathogenic bacteria using an assay coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS) run on an Ibis PLEX-ID high-throughput platform. The biothreat cluster assay identifies most of the potential bioterrorism-relevant microorganisms including Bacillus anthracis, Francisella tularensis, Yersinia pestis, Burkholderia mallei and pseudomallei, Brucella species, and Coxiella burnetii. DNA from 45 different reference materials with different formulations and different concentrations were chosen and sent to a service screening laboratory that uses the PCR/ESI-MS platform to provide a microbial identification service. The standard reference materials were produced out of a repository built up in the framework of the EU funded project β€œEstablishment of Quality Assurances for Detection of Highly Pathogenic Bacteria of Potential Bioterrorism Risk” (EQADeBa). All samples were correctly identified at least to the genus level

    The Chest Pain Choice trial: a pilot randomized trial of a decision aid for patients with chest pain in the emergency department

    Get PDF
    Background: Chest pain is a common presenting complaint in the emergency department (ED). Despite the frequency with which clinicians evaluate patients with chest pain, accurately determining the risk of acute coronary syndrome (ACS) and sharing risk information with patients is challenging. The aims of this study are (1) to develop a decision aid (CHEST PAIN CHOICE) that communicates the short-term risk of ACS and (2) to evaluate the impact of the decision aid on patient participation in decision-making and resource use. Methods/Design: This is a protocol for a parallel, 2-arm randomized trial to compare an intervention group receiving CHEST PAIN CHOICE to a control group receiving usual ED care. Adults presenting to the Saint Mary's Hospital ED in Rochester, MN USA with a primary complaint of chest pain who are being considered for admission for prolonged ED observation in a specialized unit and urgent cardiac stress testing will be eligible for enrollment. We will measure the effect of CHEST PAIN CHOICE on six outcomes: (1) patient knowledge regarding their short-term risk for ACS and the risks of radiation exposure; (2) quality of the decision making process; (3) patient and clinician acceptability and satisfaction with the decision aid; (4) the proportion of patients who decided to undergo observation unit admission and urgent cardiac stress testing; (5) economic costs and healthcare utilization; and (6) the rate of delayed or missed ACS. To capture these outcomes, we will administer patient and clinician surveys after each visit, obtain video recordings of the clinical encounters, and conduct 30-day phone follow-up. Discussion: This pilot randomized trial will develop and evaluate a decision aid for use in ED chest pain patients at low risk for ACS and provide a preliminary estimate of its effect on patient participation in decision-making and resource use

    Protecting a transgene expression from the HAC-based vector by different chromatin insulators

    Get PDF
    Human artificial chromosomes (HACs) are vectors that offer advantages of capacity and stability for gene delivery and expression. Several studies have even demonstrated their use for gene complementation in gene-deficient recipient cell lines and animal transgenesis. Recently, we constructed an advance HAC-based vector, alphoid(tetO)-HAC, with a conditional centromere. In this HAC, a gene-loading site was inserted into a centrochromatin domain critical for kinetochore assembly and maintenance. While by definition this domain is permissive for transcription, there have been no long-term studies on transgene expression within centrochromatin. In this study, we compared the effects of three chromatin insulators, cHS4, gamma-satellite DNA, and tDNA, on the expression of an EGFP transgene inserted into the alphoid(tetO)-HAC vector. Insulator function was essential for stable expression of the transgene in centrochromatin. In two analyzed host cell lines, a tDNA insulator composed of two functional copies of tRNA genes showed the highest barrier activity. We infer that proximity to centrochromatin does not protect genes lacking chromatin insulators from epigenetic silencing. Barrier elements that prevent gene silencing in centrochromatin would thus help to optimize transgenesis using HAC vectors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00018-013-1362-9) contains supplementary material, which is available to authorized users

    Magnesium Limitation Is an Environmental Trigger of the Pseudomonas aeruginosa Biofilm Lifestyle

    Get PDF
    Biofilm formation is a conserved strategy for long-term bacterial survival in nature and during infections. Biofilms are multicellular aggregates of cells enmeshed in an extracellular matrix. The RetS, GacS and LadS sensors control the switch from a planktonic to a biofilm mode of growth in Pseudomonas aeruginosa. Here we detail our approach to identify environmental triggers of biofilm formation by investigating environmental conditions that repress expression of the biofilm repressor RetS. Mg2+ limitation repressed the expression of retS leading to increased aggregation, exopolysaccharide (EPS) production and biofilm formation. Repression of retS expression under Mg2+ limitation corresponded with induced expression of the GacA-controlled small regulatory RNAs rsmZ and rsmY and the EPS biosynthesis operons pel and psl. We recently demonstrated that extracellular DNA sequesters Mg2+ cations and activates the cation-sensing PhoPQ two-component system, which leads to increased antimicrobial peptide resistance in biofilms. Here we show that exogenous DNA and EDTA, through their ability to chelate Mg2+, promoted biofilm formation. The repression of retS in low Mg2+ was directly controlled by PhoPQ. PhoP also directly controlled expression of rsmZ but not rsmY suggesting that PhoPQ controls the equilibrium of the small regulatory RNAs and thus fine-tunes the expression of genes in the RetS pathway. In summary, Mg2+ limitation is a biologically relevant environmental condition and the first bonafide environmental signal identified that results in transcriptional repression of retS and promotes P. aeruginosa biofilm formation

    Molecular diagnostics of intestinal parasites in returning travellers

    Get PDF
    A new diagnostic strategy was assessed for the routine diagnosis of intestinal parasites in returning travellers and immigrants. Over a period of 13Β months, unpreserved stool samples, patient characteristics and clinical data were collected from those attending a travel clinic. Stool samples were analysed on a daily basis by microscopic examination and antigen detection (i.e. care as usual), and compared with a weekly performed multiplex real-time polymerase chain reaction (PCR) analysis on Entamoeba histolytica, Giardia lamblia, Cryptosporidium and Strongyloides stercoralis. Microscopy and antigen assays of 2,591 stool samples showed E. histolytica, G. lamblia, Cryptosporidium and S. stercoralis in 0.3, 4.7, 0.5 and 0.1% of the cases, respectively. These detection rates were increased using real-time PCR to 0.5, 6.0, 1.3 and 0.8%, respectively. The prevalence of ten additional pathogenic parasite species identified with microscopy was, at most, 0.5%. A pre-selective decision tree based on travel history or gastro-intestinal complaints could not be made. With increased detection rates at a lower workload and the potential to extend with additional parasite targets combined with fully automated DNA isolation, molecular high-throughput screening could eventually replace microscopy to a large extent

    Sensitivity of markers of DNA stability and DNA repair activity to folate supplementation in healthy volunteers

    Get PDF
    We have previously reported that supplementation with folic acid (1.2 mg dayβˆ’1 for 12 week) elicited a significant improvement in the folate status of 61 healthy volunteers. We have examined effects of this supplement on markers of genomic stability. Little is known about the effect of folate supplementation on DNA stability in a cohort, which is not folate deficient. Preintervention, there was a significant inverse association between uracil misincorporation in lymphocyte DNA and red cell folate (P<0.05). In contrast, there were no associations between folate status and DNA strand breakage, global DNA methylation or DNA base excision repair (measured as the capacity of the lymphocyte extract to repair 8-oxoGua ex vivo). Folate supplementation elicited a significant reduction in uracil misincorporation (P<0.05), while DNA strand breakage and global DNA methylation remained unchanged. Increasing folate status significantly decreased the base excision repair capacity in those volunteers with the lowest preintervention folate status (P<0.05). Uracil misincorporation was more sensitive to changes in folate status than other measures of DNA stability and therefore could be considered a specific and functional marker of folate status, which may also be relevant to cancer risk in healthy people

    AAV Vector-Mediated Overexpression of CB1 Cannabinoid Receptor in Pyramidal Neurons of the Hippocampus Protects against Seizure-Induced Excitoxicity

    Get PDF
    The CB1 cannabinoid receptor is the most abundant G-protein coupled receptor in the brain and a key regulator of neuronal excitability. There is strong evidence that CB1 receptor on glutamatergic hippocampal neurons is beneficial to alleviate epileptiform seizures in mouse and man. Therefore, we hypothesized that experimentally increased CB1 gene dosage in principal neurons would have therapeutic effects in kainic acid (KA)-induced hippocampal pathogenesis. Here, we show that virus-mediated conditional overexpression of CB1 receptor in pyramidal and mossy cells of the hippocampus is neuroprotective and moderates convulsions in the acute KA seizure model in mice. We introduce a recombinant adeno-associated virus (AAV) genome with a short stop element flanked by loxP sites, for highly efficient attenuation of transgene expression on the transcriptional level. The presence of Cre-recombinase is strictly necessary for expression of reporter proteins or CB1 receptor in vitro and in vivo. Transgenic CB1 receptor immunoreactivity is targeted to glutamatergic neurons after stereotaxic delivery of AAV to the dorsal hippocampus of the driver mice NEX-cre. Increased CB1 receptor protein levels in hippocampal lysates of AAV-treated Cre-mice is paralleled by enhanced cannabinoid-induced G-protein activation. KA-induced seizure severity and mortality is reduced in CB1 receptor overexpressors compared with AAV-treated control animals. Neuronal damage in the hippocampal CA3 field is specifically absent from AAV-treated Cre-transgenics, but evident throughout cortical areas of both treatment groups. Our data provide further evidence for a role of increased CB1 signaling in pyramidal hippocampal neurons as a safeguard against the adverse effects of excessive excitatory network activity

    The Exopolysaccharide Matrix Modulates the Interaction between 3D Architecture and Virulence of a Mixed-Species Oral Biofilm

    Get PDF
    Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms

    The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations

    Get PDF
    Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities
    • …
    corecore