80 research outputs found

    Solvent and temperature effects on the solubility of syringic, vanillic or veratric acids: Experimental, modeling and solid phase studies

    Get PDF
    The solubility of syringic acid, vanillic acid and veratric acid was measured in pure water and eleven organic solvents (methanol, ethanol, 1-propanol, 2-propanol, 2-butanone, ethyl acetate, acetonitrile, dimethylformamide, 1,2-propanediol, 1,3-propanediol and 1,3-butanediol), at 298.2 K and 313.2 K. Besides the solubility data, the melting temperatures and enthalpies of the solutes were determined by differential scanning calorimetry, while powder and single X-ray diffractionwere used to resolve the solute solid structure, before and after the solubility studies. Formodeling purposes, theNRTL-SACmodel, also combinedwith the Reference Solvent Approach (RSA), and the Abraham solvation model were applied to describe the solid-liquid equilibria of the binary systems. A set of solvents was used to estimate the model parameters and afterwards, solubility predictions were carried out for binary systems not included in the correlation step. Better results were obtained using the Abraham solvation model with average relative deviations (ARD) of 15% for the correlation set and 26% for the predictions, which are more satisfactory than the results found with the NRTL-SAC model (33% for the correlation and 59% for the predictions) or the NRTL-SAC model combined with RSA (30% for the correlation and 59% for the predictions).We acknowledge the support of the project “AIProcMat@N2020 - Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER- 000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); Associate Laboratory LSRE-LCM - UID/EQU/50020/2019 - funded by national funds through FCT/MCTES (PIDDAC); UID/CTM/50011/2019 (CICECO), financed by national funds through the FCT/MCTES; and project AllNat - POCI-01- 0145-FEDER-030463 (PTDC/EQU-EPQ/30463/2017), financed by FEDER funds through COMPETE and Portugal2020 and national funds through FCT - Fundação para a Ciência e a Tecnologia. The authors also thank FCT for financial support to S. M. Vilas-Boas grant (SFRH/BD/138149/2018) and V. Vieira grant (SFRH/BD/108487/ 2015).info:eu-repo/semantics/publishedVersio

    Solid-liquid phase equilibrium of trans-cinnamic acid, p-coumaric acid and ferulic acid in water and organic solvents: Experimental and modelling studies

    Get PDF
    The solubility of the trans isomers of cinnamic acid, p-coumaric acid and ferulic acid was measured in water and seven organic solvents (methanol, ethanol, 1-propanol, 2-propanol, 2-butanone, ethyl acetate and acetonitrile), at 298.2 K and 313.2 K, using the analytical shake-flask technique. The melting temperatures and enthalpies of the solutes were studied by differential scanning calorimetry, while solute solid structures were identified by powder and single X-ray diffraction. The NRTL-SAC model was applied to calculate the solubility of trans-cinnamic acid and trans-ferulic acid in pure solvents. For trans-p-coumaric acid, the NRTL-SAC was combined with the Reference Solvent Approach, as the solute melting properties could not be determined. The global average relative deviations (ARD) were 32% and 41%, in the correlation and prediction stages, respectively. The Abraham solvation model was also applied. The global ARD were 20% for correlation and 29% for predictions, which can be considered very satisfactory results for these semi-predictive models.This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/ 50011/2020, and CIMO-Mountain Research Center, UIDB/00690/ 2020, both financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. We also acknowledge the support of the projects “AIProcMat@N2020 - Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER- 000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); and project AllNat - POCI-01-0145-FEDER-030463, funded by the European Regional Development Fund (ERDF) through the Competitiveness and Internationalization Operational Program (COMPETE2020-POCI) and national funding from the Foundation for Science and Technology (FCT, Portugal). S. M. Vilas-Boas thanks the financial support provided by FCT PhD grant (SFRH/BD/138149/ 2018).info:eu-repo/semantics/publishedVersio

    Electrolyte effects on the Amino acid solubility in water: solubilities of Glycine, l-Leucine, l-Phenylalanine, and l-Aspartic acid in salt solutions of (Na+, K+, NH4+)/(Cl–, NO3–)

    Get PDF
    The solubilities of glycine, L-leucine, L-phenylalanine, and L-aspartic acid in aqueous solutions of the salts composed by combining Na+, K+, and NH4 + cations and Cl− and NO3 − anions were measured up to 2.0 salt molality at 298.2 K by the analytical gravimetric method. Using these data along with a review of literature information, encompassing all amino acids for which solubility is available in the studied aqueous electrolyte solutions, allowed us to interpret the effect of the functional groups of amino acids on their solubility. The four amino acids studied here showed higher solubility in aqueous solutions of salts with the nitrate anion. Except for L-aspartic acid with a polar side chain, amino acids with apolar side chains presented the highest salting-in effect in aqueous salt solutions with NH4 +. The cations Na+ and K+ did not seem to establish relevant interactions with the amino acids and had little impact on their aqueous solubility.This work was developed within the scope of the project CIMO-Mountain Research Center, UIDB/00690/2020 and CICECO-Aveiro Institute of Materials, UIDB/50011/2020 and UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology (FCT)/MCTES. Mehriban Aliyeva thanks FCT and European Social Fund (ESF) for her Ph.D. grant (SFRH/BD/139355/2018).info:eu-repo/semantics/publishedVersio

    The brain decade in debate: II. Panic or anxiety? From animal models to a neurobiological basis

    Get PDF
    This article is a transcription of an electronic symposium sponsored by the Brazilian Society of Neuroscience and Behavior (SBNeC). Invited researchers from the European Union, North America and Brazil discussed two issues on anxiety, namely whether panic is a very intense anxiety or something else, and what aspects of clinical anxiety are reproduced by animal models. Concerning the first issue, most participants agreed that generalized anxiety and panic disorder are different on the basis of clinical manifestations, drug response and animal models. Also, underlying brain structures, neurotransmitter modulation and hormonal changes seem to involve important differences. It is also common knowledge that existing animal models generate different types of fear/anxiety. A challenge for future research is to establish a good correlation between animal models and nosological classification.Universidade Federal do Paraná Departamento de Farmacologia Laboratório de Fisiologia e Farmacologia do Sistema Nervoso CentralUniversity of Hawaii Department of NeurobiologyUniversity of Hawaii Department of PsychologyUniversidade de São Paulo Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de PsicobiologiaUniversidade de São Paulo Faculdade de Medicina de Ribeirão Preto Departamento de FisiologiaUniversidade de São Paulo Faculdade de Medicina de Ribeirão Preto Departamento de NeuropsiquiatriaUniversidade Federal de Santa Catarina Departamento de FarmacologiaCentral Nervous System Research Department Sanofi SynthelaboAston University Institute of Pharmaceutical SciencesHoffmann-La Roche Ltd.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de PsicologiaUniversity of Leeds Department of Psychology Ethopharmacology LaboratoryUniversidade Federal do Espírito Santo Centro de Biomedicina Departamento de Ciências FisiológicasUNIFESP, EPM, Depto. de PsicologiaSciEL
    corecore