4,913 research outputs found
Stellar convective cores as dark matter probes
The recent detection of a convective core in a main-sequence solar-type star
is used here to test particular models of dark matter (DM) particles, those
with masses and scattering cross sections in the range of interest for the DM
interpretation of the positive results in several DM direct detection
experiments. If DM particles do not effectively self-annihilate after
accumulating inside low-mass stars (e.g. in the asymmetric DM scenario) their
conduction provides an efficient mechanism of energy transport in the stellar
core. For main-sequence stars with masses between 1.1 and 1.3 Msun, this
mechanism may lead to the suppression of the inner convective region expected
to be present in standard stellar evolution theory. The asteroseismic analysis
of the acoustic oscillations of a star can prove the presence/absence of such a
convective core, as it was demonstrated for the first time with the Kepler
field main-sequence solar-like pulsator, KIC 2009505. Studying this star we
found that the asymmetric DM interpretation of the results in the CoGeNT
experiment is incompatible with the confirmed presence of a small convective
core in KIC 2009505.Comment: to appear on Physical Review
Testing excitation models of rapidly oscillating Ap stars with interferometry
Rapidly oscillating Ap stars are unique objects in the potential they offer
to study the interplay between a number of important physical phenomena, in
particular, pulsations, magnetic fields, diffusion, and convection.
Nevertheless, the simple understanding of how the observed pulsations are
excited in these stars is still in progress. In this work we perform a test to
what is possibly the most widely accepted excitation theory for this class of
stellar pulsators. The test is based on the study of a subset of members of
this class for which stringent data on the fundamental parameters are available
thanks to interferometry. For three out of the four stars considered in this
study, we find that linear, non-adiabatic models with envelope convection
suppressed around the magnetic poles can reproduce well the frequency region
where oscillations are observed. For the fourth star in our sample no agreement
is found, indicating that a new excitation mechanism must be considered. For
the three stars whose observed frequencies can be explained by the excitation
models under discussion, we derive the minimum angular extent of the region
where convection must be suppressed. Finally, we find that the frequency
regions where modes are expected to be excited in these models is very
sensitive to the stellar radius. This opens the interesting possibility of
determining this quantity and related ones, such as the effective temperature
or luminosity, from comparison between model predictions and observations, in
other targets for which these parameters are not well determined.Comment: Accepted for publication in the MNRA
Inertial-Hall effect: the influence of rotation on the Hall conductivity
Inertial effects play an important role in classical mechanics but have been
largely overlooked in quantum mechanics. Nevertheless, the analogy between
inertial forces on mass particles and electromagnetic forces on charged
particles is not new. In this paper, we consider a rotating non-interacting
planar two-dimensional electron gas with a perpendicular uniform magnetic field
and investigate the effects of the rotation in the Hall conductiv
Witnessed Entanglement
We present a new measure of entanglement for mixed states. It can be
approximately computable for every state and can be used to quantify all
different types of multipartite entanglement. We show that it satisfies the
usual properties of a good entanglement quantifier and derive relations between
it and other entanglement measures.Comment: Revised version. 7 pages and one figur
Teleworking in the context of the Covid-19 pandemic: Advantages, disadvantages and influencing factors - the workers’perspective
Purpose – This study analyses workers' perceptions of the advantages and disadvantages of teleworking in the context of the Covid-19 pandemic, identifies factors that influence these perceptions, and verifies workers' intentions to maintain this work arrangement after the pandemic.
Theoretical framework – By conducting a comprehensive literature review, we identified the advantages and disadvantages of teleworking and selected factors that have a significant influence over it.
Design/methodology/approach – This is an exploratory and quantitative study, with primary data collection using a survey to identify the context of the teleworking experience and workers' perceptions of the advantages and disadvantages associated with this work arrangement. The sample obtained was 304 individuals. The data collected were processed using descriptive and inferential statistical analysis.
Findings – The teleworking experience was essentially positive. Most workers intend to maintain this arrangement after the pandemic. The conditions offered by the organizations and the existence of an adequate workspace at home were factors that strongly influenced workers' perceptions of the advantages and disadvantages of teleworking.
Practical & social implications of research – Considering workers' perceived benefits and willingness to remain teleworking, organizations should implement and manage teleworking programs with the understanding that organizational factors greatly influence the teleworker's experience and are critical to the success of this practice.
Originality/value – This study provides additional data concerning the teleworking experience during the Covid-19 pandemic and, to the best of our knowledge, it is one of the first studies to focus on the perception of Portuguese workers regarding the advantages and disadvantages of teleworking and to identify influencing factors.info:eu-repo/semantics/publishedVersio
Faithful Squashed Entanglement
Squashed entanglement is a measure for the entanglement of bipartite quantum
states. In this paper we present a lower bound for squashed entanglement in
terms of a distance to the set of separable states. This implies that squashed
entanglement is faithful, that is, strictly positive if and only if the state
is entangled. We derive the bound on squashed entanglement from a bound on
quantum conditional mutual information, which is used to define squashed
entanglement and corresponds to the amount by which strong subadditivity of von
Neumann entropy fails to be saturated. Our result therefore sheds light on the
structure of states that almost satisfy strong subadditivity with equality. The
proof is based on two recent results from quantum information theory: the
operational interpretation of the quantum mutual information as the optimal
rate for state redistribution and the interpretation of the regularised
relative entropy of entanglement as an error exponent in hypothesis testing.
The distance to the set of separable states is measured by the one-way LOCC
norm, an operationally-motivated norm giving the optimal probability of
distinguishing two bipartite quantum states, each shared by two parties, using
any protocol formed by local quantum operations and one-directional classical
communication between the parties. A similar result for the Frobenius or
Euclidean norm follows immediately. The result has two applications in
complexity theory. The first is a quasipolynomial-time algorithm solving the
weak membership problem for the set of separable states in one-way LOCC or
Euclidean norm. The second concerns quantum Merlin-Arthur games. Here we show
that multiple provers are not more powerful than a single prover when the
verifier is restricted to one-way LOCC operations thereby providing a new
characterisation of the complexity class QMA.Comment: 24 pages, 1 figure, 1 table. Due to an error in the published
version, claims have been weakened from the LOCC norm to the one-way LOCC
nor
- …