70 research outputs found

    Local anesthetic infiltration vs. nervous blocks in face’s skin lesions: what’s new

    Get PDF
    Skin tumors are the most common type of cancer. They are localized throughout the body, more frequently in those regions chronically exposed to sun, like face, scalp and neck, compromising aesthetic appearance. The optimization of day hospital surgical procedures is mandatory, to avoid erroneous indications, insufficient intra operative comfort and prolonged recovery. New guidelines should be discussed and shared. Patients were divided in two groups: i. Group A of 50 patients, 21 male and 29 female, age 65 ±9, ASA I – III (10/19/21), weight 68±11 kg, height 160±8, with anesthetic Local Infiltration (LI); ii. Group B of 50 patients, 16 male, 34 female, age 68 ±10, ASA I – III (9/22/19), weight 64 ± 9 kg, height 158 ±11, with nerve block (NB). The purpose of our study is to evaluate the analgesia level, compliance and complication rate after LI or selective NB with alkalinised mepivacaine cloridrate 2%, Guardant®. Demographic data, ASA physical stauts, size of lesions, surgery, anesthesia durations and volume of LA injected were analyzed. Fisher’s exact test and Student’s t test were used; P ≤ 0.05 was considered statistically significant. No differences in age (65 ± 9 vs 68 ± 10 years), weight (68 ± 11 vs 64 ± 9), height (160 ± 8 vs 158 ± 11 cm), size of lesion (23 ± 11 vs 25 ± 14 mm), duration of surgery (47 ± 18 vs 51 ± 23 minutes) were detected in two groups (p > 0.05). Both anesthetic techniques ensured good analgesia, but only nerve’s blocks were be able to determine satisfactory intra operative patient’s comfort, a bloodless wound and weak risk for nervous lesions and toxic reaction to local anesthetic

    A stoichiometric solvent-free protocol for acetylation reactions

    Get PDF
    Considering the remarkable relevance of acetylated derivatives of phenols, alcohols, and aryl and alkyl thiols in different areas of biology, as well as in synthetic organic chemistry, a sustainable solvent-free approach to perform acetylation reactions is proposed here. Acetylation reactions are classically performed using excess of acetic anhydride (Ac2O) in solvent-free conditions or by eventually working with stoichiometric amounts of Ac2O in organic solvents; both methods require the addition of basic or acid catalysts to promote the esterification. Therefore, they usually lead to the generation of high amounts of wastes, which sensibly raise the E-factor of the process. With the aim to develop a more sustainable system, a solvent-free, stoichiometric acetylation protocol is, thus, proposed. The naturally occurring phenol, thymol, can be converted to the corresponding-biologically active-ester with good yields, in the presence of 1% of VOSO4. Interestingly, the process can be efficiently adopted to synthesize other thymyl esters, as well as to perform acetylation of alcohols and aryl and alkyl thiols. Remarkably, a further improvement has been achieved replacing Ac2O with its greener alternative, isopropenyl acetate (IPA)

    Effects of genotype and environmental conditions on grapevine (Vitis vinifera L.) shoot morphology

    Get PDF
    Grapevine shoot morphology is widely studied for both ampelography and growing adaptation to environmental stresses. However, few is known concerning the relative contribution and interactions of the genotype and of the growing conditions to the vegetative growth. In this work, seven grapevine cultivars were studied in three geographically distant ampelographic collections to maximize the genotype and environment differences among samples. Phytomers were studied concerning the leaf area and the stem and petiole diameters and lengths. These measurements allowed the calculation of derivative parameters to describe the proportions among elements. Despite most of the studied parameters significantly discriminated both factors (cultivar and growing conditions), it was possible to identify, for each one of them, the most promising parameters based on their relative variance explanation. In fact, a negative correlation was observed between the roles of genotype and environment among the studied parameters. The low interaction effect suggested a stability in the plant behaviors, confirming the possibility to use vegetative descriptions for both cultivar discrimination and growing conditions. Future studies will be performed to develop specific indexes based on the phenotypical variability of shoot morphology described here

    Water deficit effects on grapevine woody tissue pigmentations

    Get PDF
    Water availability is an important environmental factor in viticulture. In a climate change context, vineyard management should be adapted to the new conditions. Drought-resistant rootstocks need to be selected. In this paper, reflectance spectroscopy is proposed as a new method to characterize the water stress effects on woody section pigmentations. Cabernet Sauvignon grafted on 4 different rootstocks (140Ru, 420A, M2 and M3) represented the plant material. Greenhouse controlled conditions allowed the comparison of well-watered (WW) and water-stressed (WS) plants. The physiological responses were characterized concerning daily water consumption, stem water potential, gas exchange, and plant growth. The water use efficiency was calculated and discussed as well. Spectroscopy analyses of woody sections indicated a major absorption band probably related to phenolic derivatives. Water stress produced characteristic spectrum modifications both in the Cabernet Sauvignon stem and in the rootstock xylem. These preliminary results encourage further studies addressed at the evaluation of drought-resistant genotypes, to distinguish their stress responses and to characterize the compositional aspects linked to drought tolerance

    Assessing the Effectiveness of Variable-Rate Drip Irrigation on Water Use Efficiency in a Vineyard in Northern Italy

    Get PDF
    Although many studies in the literature illustrate the numerous devices and methodologies nowadays existing for assessing the spatial variability within agricultural fields, and indicate the potential for variable-rate irrigation (VRI) in vineyards, only very few works deal with the implementation of VRI systems to manage such heterogeneity, and these studies are usually conducted in experimental fields for research aims. In this study, a VR drip irrigation system was designed for a 1-ha productive vineyard in Northern Italy and managed during the agricultural season 2018, to demonstrate feasibility and effectiveness of a water supply differentiated according to the spatial variability detected in field. Electrical resistivity maps obtained by means of an electro-magnetic induction sensor were used to detect four homogeneous zones with similar soil properties. In each zone, a soil profile was opened, and soil samples were taken and analyzed in laboratory. Two irrigation management zones (MZs) were identified by grouping homogeneous zones on the basis of their hydrological properties, and an irrigation prescription map was built consistently with the total available water (TAW) content in the root zone of the two MZs. The designed drip irrigation system consisted of three independent sectors: the first two supplied water to the two MZs, while the third sector (reference sector) was managed following the farmer\u2019s habits. During the season, irrigation in the first two sectors was fine-tuned using information provided by soil moisture probes installed in each sector. Results showed a reduction of water use by 18% compared to the \u2018reference\u2019 sector without losses in yield and product quality, and a grape\u2019s maturation more homogeneous in time

    SNP genotyping elucidates the genetic diversity of Magna Graecia grapevine germplasm and its historical origin and dissemination

    Get PDF
    Background: Magna Graecia is the ancient name for the modern geopolitical region of South Italy extensively populated by Greek colonizers, shown by archeological and historical evidence to be the oldest wine growing region of Italy, crucial for the spread of specialized viticulture around Mediterranean shores. Here, the genetic diversity of Magna Graecia grape germplasm was assessed and its role in grapevine propagation around the Mediterranean basin was underlined. Results: A large collection of grapevines from Magna Graecia was compared with germplasm from Georgia to the Iberian Peninsula using the 18 K SNP array. A high level of genetic diversity of the analyzed germplasm was determined; clustering, structure analysis and DAPC (Discriminant Analysis of Principal Components) highlighted the genetic relationships among genotypes from South Italy and the Eastern Mediterranean (Greece). Gene flow from east (Georgia) to west (Iberian Peninsula) was identified throughout the large number of detected admixed samples. Pedigree analysis showed a complex and well-structured network of first degree relationships, where the cultivars from Magna Graecia were mainly involved. Conclusions: This study provided evidence that Magna Graecia germplasm was shaped by historical events that occurred in the area due to the robust link between South Italian and Greek genotypes, as well as, by the availability of different thermal resources for cultivars growing in such different winegrowing areas. The uniqueness of this ampelographic platform was mainly an outcome of complex natural or human-driven crosses involving elite cultivars

    Drought tolerance in grapevine rootstocks: an association genetics approach

    Get PDF
    Water deficit is widely recognized as one of the major constraint in the Mediterranean and semi-arid regions where a large part of the world's premium wines are produced. Since the introduction of new varieties in the wine industry is not so straightforward, breeding grapevine rootstocks for tolerance to drought is becoming a key strategy for the future. A Genome Wide Association Study (GWAS) and a Candidate Gene (CG) approach were used to investigate the genetic basis of drought response mechanisms in an ad hoc core-collection consisting of 96 different genotypes of Vitis spp. and hybrids, selected to ensure the maximum genetic variability of a larger population of commercial, germplasm and new bred rootstocks. The physiological and growth responses to water deficit of more than 500 one-year old potted cuttings were evaluated over 30 days in semi-controlled conditions. For each genotype, three well-watered control plants were mantained at 90% of the Field Capacity (FC) determined by gravimetric method and three plants were subjected to water stress. After 7 days, water deficit was gradually established to reach first a moderate stable water deficit (50% FC for 7 days) and then a more severe and stable water deficit (30% FC for 7 days). Finally, stressed plants were fully irrigated to evaluate the level of plant recovery. Stomatal conductance was correlated with plant growth evaluation (leaves and shoots biometric measures) to define different response classes and thermal infrared imaging was implemented for the first time as a valuable remote sensing tool for high-throughput phenotyping in a GWAS experiment. Acknowledgements: Italian "Progetto AGER, bando Viticoltura da Vino" (SERRES, 2010-2105

    SNP genotyping elucidates the genetic diversity of Magna Graecia grapevine germplasm and its historical origin and dissemination

    Get PDF
    BACKGROUND: Magna Graecia is the ancient name for the modern geopolitical region of South Italy extensively populated by Greek colonizers, shown by archeological and historical evidence to be the oldest wine growing region of Italy, crucial for the spread of specialized viticulture around Mediterranean shores. Here, the genetic diversity of Magna Graecia grape germplasm was assessed and its role in grapevine propagation around the Mediterranean basin was underlined. RESULTS: A large collection of grapevines from Magna Graecia was compared with germplasm from Georgia to the Iberian Peninsula using the 18\u2009K SNP array. A high level of genetic diversity of the analyzed germplasm was determined; clustering, structure analysis and DAPC (Discriminant Analysis of Principal Components) highlighted the genetic relationships among genotypes from South Italy and the Eastern Mediterranean (Greece). Gene flow from east (Georgia) to west (Iberian Peninsula) was identified throughout the large number of detected admixed samples. Pedigree analysis showed a complex and well-structured network of first degree relationships, where the cultivars from Magna Graecia were mainly involved. CONCLUSIONS: This study provided evidence that Magna Graecia germplasm was shaped by historical events that occurred in the area due to the robust link between South Italian and Greek genotypes, as well as, by the availability of different thermal resources for cultivars growing in such different winegrowing areas. The uniqueness of this ampelographic platform was mainly an outcome of complex natural or human-driven crosses involving elite cultivars

    Grapevine field experiments reveal the contribution of genotype, the influence of environment and the effect of their interaction (GXE) on the berry transcriptome

    Get PDF
    Changes in the performance of genotypes in different environments are defined as genotype x environment (G x E) interactions. In grapevine (Vitis vinifera), complex interactions between different genotypes and cli- mate, soil and farming practices yield unique berry qualities. However, the molecular basis of this phe- nomenon remains unclear. To dissect the basis of grapevine G x E interactions we characterized berry transcriptome plasticity, the genome methylation landscape and within-genotype allelic diversity in two genotypes cultivated in three different environments over two vintages. We identified, through a novel data-mining pipeline, genes with expression profiles that were: unaffected by genotype or environment, genotype-dependent but unaffected by the environment, environmentally-dependent regardless of geno- type, and GxE-related. The GxE-related genes showed different degrees of within-cultivar allelic diversity in the two genotypes and were enriched for stress responses, signal transduction and secondary metabo- lism categories. Our study unraveled the mutual relationships between genotypic and environmental vari- ables during GxE interaction in a woody perennial species, providing a reference model to explore how cultivated fruit crops respond to diverse environments. Also, the pivotal role of vineyard location in deter- mining the performance of different varieties, by enhancing berry quality traits, was unraveled

    High-throughput 18K SNP array to assess genetic variability of the main grapevine cultivars from Sicily

    Get PDF
    The viticulture of Sicily, for its vocation, is one of the most important and ancient forms in Italy. Autochthonous grapevine cultivars, many of which known throughout the world, have always been cultivated in the island from many centuries. With the aim to preserve this large grapevine diversity, previous studies have already started to assess the genetic variability among the Sicilian cultivars by using morphological and microsatellite markers. In this study, simple sequence repeat (SSR) were utilized to verify the true-to-typeness of a large clone collection (101) belonging to 21 biotypes of the most 10 cultivated Sicilian cultivars. Afterwards, 42 Organization Internationale de la Vigne et du Vin (OIV) descriptors and a high-throughput single nucleotide polymorphism (SNP) genotyping array (Vitis18kSNP) were applied to assess genetic variability among cultivars and biotypes of the same cultivar. Ampelographic traits and high-throughput SNP genotyping platforms provided an accuracy estimation of genetic diversity in the Sicilian germplasm, showing the relationships among cultivars by cluster and multivariate analyses. The large SNP panel defined sub-clusters unable to discern among biotypes, previously classified by ampelographic analysis, belonging to each cultivar. These results suggested that a very large number of SNP did not cover the genome regions harboring few morphological traits. Genetic structure of the collection revealed a clear optimum number of groups for K = 3, clustering in the same group a significant portion of family-related genotypes. Parentage analysis highlighted significant relationships among Sicilian grape cultivars and Sangiovese, as already reported, but also the first evidences of the relationships between Nero d’Avola and both Inzolia and Catarratto. Finally, a small panel of highly informative markers (12 SNPs) allowed us to isolate a private profile for each Sicilian cultivar, providing a new tool for cultivar identification
    • …
    corecore