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SUMMARY

Changes in the performance of genotypes in different environments are defined as genotype 3 environment

(G3E) interactions. In grapevine (Vitis vinifera), complex interactions between different genotypes and cli-

mate, soil and farming practices yield unique berry qualities. However, the molecular basis of this phe-

nomenon remains unclear. To dissect the basis of grapevine G3E interactions we characterized berry

transcriptome plasticity, the genome methylation landscape and within-genotype allelic diversity in two

genotypes cultivated in three different environments over two vintages. We identified, through a novel

data-mining pipeline, genes with expression profiles that were: unaffected by genotype or environment,

genotype-dependent but unaffected by the environment, environmentally-dependent regardless of geno-

type, and G3E-related. The G3E-related genes showed different degrees of within-cultivar allelic diversity

in the two genotypes and were enriched for stress responses, signal transduction and secondary metabo-

lism categories. Our study unraveled the mutual relationships between genotypic and environmental vari-

ables during G3E interaction in a woody perennial species, providing a reference model to explore how

cultivated fruit crops respond to diverse environments. Also, the pivotal role of vineyard location in deter-

mining the performance of different varieties, by enhancing berry quality traits, was unraveled.

Keywords: genotype 3 environment interaction (G3E), Vitis vinifera (grapevine), data mining, gene expres-

sion variation, secondary metabolism.

INTRODUCTION

The phenotype of every organism is determined by a

combination of its genotype (G), environment (E) and geno-

type-dependent responses to different environments, the

latter being known as genotype 9 environment (G9E) inter-

actions (Grishkevich and Yanai, 2013; El-Soda et al., 2014).

Variations in gene expression reflecting different types of

genetic and epigenetic regulation can be used as a proxy to

define genotype–phenotype relationships in a changing

environment (Rockman and Kruglyak, 2006; Perry and

Mank, 2014). Recent developments in genomics and gen-

ome-wide transcriptome profiling have therefore revolution-

ized molecular ecology and evolutionary genetics, offering

opportunities to expand traditional G9E studies beyond

model organisms (Thomas, 2010; Perry and Mank, 2014).

Plants have a remarkable ability to thrive despite their

limited capacity to alter their surroundings (Des Marais
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et al., 2013). This phenomenon relies on phenotypic plas-

ticity (the ability to express different phenotypes from the

same base genotype depending on the circumstances) and

has gained attention recently due to the challenges posed

by climate change (Nicotra et al., 2010). The stability of

crop growth and yields must be maintained over diverse

and dynamic environments, and an understanding of how

the genotype responds to and interacts with the environ-

ment is necessary to predict the effects of climate change

on ecology and modern agriculture (Fournier-Level et al.,

2011; Sasaki et al., 2015). However, the environmental

component of this complex interaction is often expensive

or impossible to define with any precision in natural envi-

ronments, and studies based on variation of gene expres-

sion in open-field-grown plants do not tend to address

G9E interactions in detail (Brosch�e et al., 2005; Holliday

et al., 2010; Travers et al., 2010; Richards et al., 2012; Dal

Santo et al., 2013, 2016b; Hess et al., 2016).

Grapevine (Vitis spp., family Vitaceae) is an economi-

cally important fruit crop used globally to produce food

and beverages. This crop is characterize by a pro-

nounced sensitivity towards the environment, and the

metabolic composition of the berries is characterized by

broad phenotypic plasticity, offering advantages such as

the range of different wines that can be produced from

the same cultivar and the adaptation of existing cultivars

to different growing regions (Keller, 2010; Dai et al.,

2011). The relevance of the interaction between varietal

genotypes and the environment is best exemplified by

the concept of terroir, which combines varietal attributes

with the climate, soil and winemaking practices, plus all

the possible interactions among them. It is anecdotally

known that many grapevine varieties perform differently

in distinct environments, with some varieties such as

Cabernet Sauvignon and Chardonnay offering more con-

sistency and others such as Sangiovese, Nebbiolo and

Pinot Noir showing greater variation. Most grapevine

G9E studies have focused on single traits using classical

methods such as the analysis of quantitative trait loci

(Adam-Blondon et al., 2011), but we have recently

explored the use of ‘omics’ approaches to unravel the

phenotypic plasticity of grapevine berries on a broader

scale (Dal Santo et al., 2013, 2016b; Anesi et al., 2015;

Paim Pinto et al., 2016).

Here we investigated the phenotypic plasticity and G9E

interactions of two grapevine varieties by analyzing their

transcriptomes in three different environments at four dif-

ferent developmental stages over two consecutive vin-

tages. A tailored statistical data-mining tool based on data

reduction allowed the inspection of G, E and G9E clusters

of gene expression, and contributed to the identification of

several candidate genes that could be used as markers of

berry quality traits in G9E interactions. Parallel genomic

and epigenomic analysis provided a multilayered scientific

definition of the formerly empirical basis of terroir. Finally,

correlation analysis was applied to the transcriptomic and

climatic data to unravel the molecular basis of G9E inter-

actions in open-field-grown crops.

RESULTS

Experimental design of the G3E interaction studies

Grapevine berries (V. vinifera cultivars Sangiovese and

Cabernet Sauvignon) were harvested at four different

developmental stages – pea size (PS), pre-veraison (PV),

mid-ripening (MR) and fully ripe (FR) – from three central

Italian locations (Bolgheri on the Tuscany coast, Montal-

cino in the Tuscany hills and Riccione on the Adriatic

coast) during the 2011 and 2012 growing seasons (Fig-

ure 1a, Tables S1 and S2 in the online Supporting Informa-

tion). The berries were collected in biological triplicates,

giving a total of 144 samples (Table S3). We recorded the

daily mean temperature (Td), daily maximum temperature

(Tx), global solar radiation (GSR), growing degree days

(GDD), rainfall and available soil water content (AWC)

throughout the experiment (Figures 1a and S1). Climatic

parameters differed among the locations and vintages,

with the largest differences recorded in Bolgheri for the

lower Td values and in Montalcino for the highest GSR.

Interestingly, AWC data revealed water stress in all three

vineyards, between June and September 2011 and

between June and August 2012 (Figure 1a, Text S1).

Fruit composition and yield components were evaluated

at harvest in the 2011 and 2012 seasons. There were statis-

tically significant differences in each of the parameters,

except for the Sangiovese yield per vine and number of

berry clusters in 2012 (Table S4). In particular, the highest

soluble solids content in both varieties (°Brix) was

recorded in the Riccione (2011) and Montalcino (2012)

regions (Figure 1b, inset). The lowest berry weights at all

developmental stages were recorded in the Montalcino

region, with the exception of the most variable PS stage

(Figure 1b).

The physiological response of the vines to environmen-

tal variables was assessed by monitoring trends in the

photosynthetic rate (Pn), stomatal conductance (gs), tran-

spiration rate (ET), soil water content (SWC), and stem

water potential (SWP). This analysis revealed that the Mon-

talcino region suffered the greatest degree of water stress

during both growing seasons (Text S1). We also monitored

the carotenoid, norisoprenoid, chlorophyll, flavonol and

hydroxycinnamic acid (HCA) content of the berries (Tables

S5 and S6), revealing general positive relations for both

varieties during early developmental stages before verai-

son between carotenoid levels and the regional GSR,

which was highest in Montalcino and Bolgheri (Figure 1a).

The synthesis of norisoprenoid compounds in Sangiovese

berries varied among the locations and vintages, and
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appeared more dependent on eco-physiological conditions

during maturation than the carotenoid content (Text S1).

Sangiovese berries show greater transcriptomic plasticity

than Cabernet Sauvignon

The plasticity of the grapevine berry transcriptome in

response to environmental variables was determined using

the NimbleGen whole-genome microarray (090918_Vitus_-

exp_HX12). A Pearson’s distance correlation matrix was

generated to compare the 48 berry transcriptomes (Fig-

ure 2a), revealing a strong correlation (R > 0.85) between

samples collected before the onset of ripening (PS and

PV), and between samples collected during ripening (MR

and FR), regardless of cultivar, vintage and location, as

previously reported for Corvina berries (Fasoli et al., 2012).

The correlation values were used as distance coefficients

to build a dendrogram, which described the dynamic berry

transcriptome in greater depth (Figure 2b). The pre-ripen-

ing samples clustered largely according to the maturation

stage, whereas the vineyard location had no significant

impact. Similarly, the post-ripening Cabernet Sauvignon

samples revealed a stable clustering pattern based on

stage > vintage > location, but in the Sangiovese samples

this hierarchy was only observed for the FR berries col-

lected in 2012 (Figure 2b). The number of transcripts show-

ing significant modulation between vintages and among

locations was assessed separately in the two genotypes,

firstly by overcoming the typical bimodal distribution of

NimbleGen-derived fluorescence intensity values (Fig-

ure S2), then by two-way analysis of variance (ANOVA).

This analysis revealed that about 25% of the modulated

genes in each genotype were differentially expressed

between the 2011 and 2012 vintages (Figure 2c), agreeing

with previous reports showing the impact of vintage on

berry transcriptome plasticity (Dal Santo et al., 2013). How-

ever, the effect of location was greater in Sangiovese than

Cabernet Sauvignon, with almost twice as many genes in

the former cultivar being differentially expressed among

the three locations as well as in the vintage 9 location

interaction (Figure 2c), indicating a greater degree of

Figure 1. Eco-physiological characterization.

(a) Geographical locations and climatic trends of the vineyards investigated in this study. CS, Cabernet Sauvignon; SG, Sangiovese. Td (°C), daily mean temper-

ature; GSR, daily global solar radiation; AWC, available water content. Yellow line, data collected during the 2011 season; Purple line, data collected during the

2012 season.

(b) Physiological characterization of the sampled berries. Upper panel, the four berry developmental stages analyzed in the study over the double-sigmoid

grapevine berry ripening curve. PS, pea size; PV, pre-veraison; MR, mid-ripening; FR, fully ripe. Lower panel, mean berry weight at each time point, for Cabernet

Sauvignon (red) and Sangiovese (blue) in the three locations (different textures). The mean values of total soluble solids (°Brix) refer to the FR stage (maximum

sugar accumulation). Bars show mean values � SD (n = 50); different letters indicate significant differences among sites according to Duncan’s test at P < 0.05.

See Text S1 for more details of the eco-physiological characterization.
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transcriptomic plasticity in Sangiovese berries under our

experimental conditions,.

The potential epigenetic basis of these cultivar-depen-

dent differences was investigated by comparing the DNA

methylation level in the PV and MR samples (two cultivars,

three locations, two vintages) by reduced representation

bisulfite sequencing. All samples provided comparable

methylation data for a subset of about 23 000 cytosine resi-

dues enriched in the genic compartment, particularly at the

50 end of transcribed regions (Figure S3a). The genotype

appeared to be a major covariate accounting for up to 39%

of the variance in methylation between samples, depend-

ing on the sequence context (Figure 2d–f and Figure S3b–
d), and was associated with significant differences in

methylation across the cytosine panel (Figure S3e–h). Sig-
nificant hypermethylation was consistently observed at

CHH sites during the MR developmental stage (Figure S3i).

However, there was no convincing association between

methylation and environmental conditions, indicating that

methylation remained stable regardless of variations in

external cues and in gene expression.

Grapevine G3E interactions revealed by a novel statistical

approach

The large scale of our sampling procedure required the

development of a new statistical approach to uncover the

hidden G9E interactions and to determine how they affect

berry transcriptome plasticity in field-grown plants. A

three-step data-mining pipeline (Figure 3a, Text S2) was

therefore used to summarize the most important relation-

ships within the dataset, focusing on the quantitative

impact of stage, cultivar, vintage and location (and interac-

tions among them) on gene expression.

Step 1: screening. We identified a subset of 11 427

genes with uninteresting profiles, i.e. no expression, con-

stitutive expression or outlier expression (Figure S4,

Table S7). The remaining dataset thus comprised 18 122

genes warranting statistical analysis (Data S1).

Step 2: cluster definition. We applied k-means clustering

to the subset of 18 122 interesting genes, resolving to 300

clusters that accounted for about 70% of the total variance

in gene expression (Figure S5a). For each cluster we

Figure 2. Unsupervised analysis of the transcrip-

tomic plasticity and methylation status of Cabernet

Sauvignon and Sangiovese berries.

Pearson’s distance correlation matrix (a) and cluster

dendrogram (b) to compare the transcriptomes of

each sample, based on the average expression

value of the three biological replicates. The left side

bar indicates the consistency of the berry transcrip-

tome among three locations for the two genotypes

(red = Cabernet Sauvignon, blue = Sangiovese;

changing bar texture represents inconsistency

among transcriptomes in the three locations). Sam-

ple names are based on genotype (CS, Cabernet

Sauvignon; SG, Sangiovese) followed by location

(MO, Montalcino; BO, Bolgheri; RI, Riccione), devel-

opmental stage (PS, pea size, dark green; PV, pre-

veraison, light green; MR, mid-ripening, slate blue;

FR, fully ripe, dark blue) and vintage (11 = 2011,

12 = 2012). See Table S3 for more details. (c) Tran-

scriptomic plasticity differs in the two genotypes.

Analysis of variance (two-sided two-way ANOVA,

P < 0.01, vintage and location classes) was com-

puted on each of the two genotype-specific data-

sets. The number of differentially expressed genes

per variable is shown. (d)–(f) Differentially methy-

lated regions (DMRs) define the two genotypes.

Principal component analysis scatter plots of DMR

values were obtained separately for the three

methylation contexts: CG and CHG, first two com-

ponents; CHH, first and fifth components.

Red = Cabernet Sauvignon, blue = Sangiovese.
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defined an average representative expression profile and

an index of its representativeness (homogeneity index, Rc)

based on the variability of expression around the average

profile, which measured the internal cohesion of each clus-

ter (Figure S5b, c).

Step 3: cluster characterization. We then used an

advanced machine learning algorithm known as the gradi-

ent boosting machine (GBM)(Friedman, 2001) to evaluate

the extent to which each of the variables (stage, cultivar,

vintage and location) affected gene expression. The GBM

output was a set of variable importance measures (VIMs),

i.e. non-parametric statistical tools that estimate the impact

of covariates on a selected outcome, taking into account

the effect of potential (even complex) interactions among

variables and nonlinear relationships on the outcome. The

median VIMs of each of the 300 clusters were used to char-

acterize the relationship between the clusters and the four

experimental conditions (Text S2). Principal component

analysis (PCA) was then used to reduce the dimensionality

of the resulting matrix, in which the average profiles of the

300 clusters were arranged as columns. Principal compo-

nents, computed as linear combinations of cluster profiles,

were able to discriminate among the stage, cultivar and

vintage variables characterizing the 48 experimental condi-

tions with remarkable accuracy (Figure S6). Figure 3(b–e)
shows that the loadings of the clusters in the first, second,

third and tenth rotated principal components (DimRot1, 2,

3 and 10) are associated with the importance of the stage,

cultivar, vintage and location variables, respectively. The

location variable showed the weakest association of load-

ings and least importance, and homogeneity within these

clusters was low. The location-related clusters also pre-

sented more complex profiles, which appeared to be

affected by interactions with other variables (Figure 3e).

In summary, the new statistical pipeline allowed the

18 122 modulated genes to be assigned to 300 clusters,

each described by four VIMs (one for each variable). Each

VIM has its own dynamic range due to the intrinsic impor-

tance of that variable in explaining the total variability of

the dataset, resulting in the maximum dynamic range for

the stage variable and the minimum range for the location

variable. We therefore assigned a rank to each cluster

according to the VIM for each variable. For example, clus-

ter no. 266 has similar values for VIM_Location (196.46)

and VIM_Stage (177.70) and is ranked first for the location

variable but only 282nd for the stage variable (Data S2 and

Data S3).

Influence of variables on transcriptional variation in the

context of G3E interactions

A rank-based approach was developed to classify the clus-

ters. Variable-specific clusters were defined as those rank-

ing in the top 100 for only one of the four variables,

whereas variable-shared clusters were defined as those

ranking in the top 100 clusters for more than one variable

(Data S2). The specific and shared clusters were mapped

using a Venn diagram (Figure 4a).

Most of the clusters (75) were stage-specific, comprising

6793 genes and accounting for 37.5% of all modulated

genes (Figure 4b, Data S2 and Data S4). BINGO Gene

Ontology (GO) enrichment analysis applied to genes in the

75 stage-specific clusters revealed enriched functional cate-

gories related to photosynthesis and energy generation,

response to endogenous stimuli, and carbohydrate meta-

bolism (Figure 4c, Text S3). Interestingly, the number of

stage-specific clusters with a downregulated metaprofile

(38, comprising 3243 genes) was nearly identical to the

number showing upregulation during berry ripening (37,

comprising 3550 genes) (Figure 4d). Stage-specific tran-

scripts were transcribed from genes located predominantly

in distal chromosome regions, whereas pericentromeric

genes were significantly underrepresented, with 197 cases

compared with 329.1–331.1 expected within the confidence

interval (Figure 4e, Data S5).

There were 48 cultivar-specific clusters, containing 2648

genes and accounting for 14.6% of all modulated genes

(Figure 4b, Data S2 and Data S4). These were mainly

enriched for functional categories related to biotic and abi-

otic stress, such as response to stress, death, and cell

death (Figure 4f, Text S3). An analysis of copy number

variation (CNV) identified 52 differentially expressed genes

in genomic regions differing in copy number between the

Cabernet Sauvignon and Sangiovese cultivars. Cluster

analysis classified 39 of these transcripts as cultivar-speci-

fic, and in 31 cases the difference in copy number was con-

cordant with the difference in absolute transcript levels

determined by RNA sequencing (RNA-seq) analysis (Fig-

ure 4g, Data S6). The remaining cultivar-specific transcripts

were also transcribed from genes that varied in copy num-

ber between the cultivars, but the cultivar with fewer

copies showed higher expression levels. However, in all

these cases the genes were minimally expressed in both

cultivars based on a mean fragments per kilobase mapped

(FPKM) value of less than 1 (Data S6).

There were 26 vintage-dependent clusters, containing

1657 genes and representing 9.1% of all modulated genes

(Figure 4b, Data S4). These were enriched for cellular pro-

cess and signal transduction functions (Figure 4h, Text S3)

and contained many signal transduction effectors, includ-

ing components of calcium-based signaling pathways

(calmodulins, calcium-binding proteins and calcium-

dependent protein kinases). These are used in a flexible

manner by plants to couple variable external signals to

specific cellular responses (Yang and Poovaiah, 2003).

Finally, there were 27 location-specific clusters, contain-

ing 1183 genes and representing 6.5% of all modulated

genes (Figure 4b, Data S4). These clusters were character-

ized by a smaller average number of genes per cluster and
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a lower average Rc index than the other variable-specific

clusters. Only 12 of the clusters (44%) ranked among the

top 50 VIMLocation scores (Data S2), indicating that the loca-

tion per se contributes less to variations in berry gene

expression than the other variables. However, the 27 loca-

tion-specific clusters were particularly enriched for the

functional category secondary metabolic process (Fig-

ure 4i). For example, they included several members of the

stilbene synthase gene family, which control resveratrol

synthesis, as well as genes responsible for monoterpene

synthesis and the oxidative polymerization of phenolic

compounds in the phenylpropanoid pathway (Pourcel

et al., 2005) (Text S3).

As stated above, clusters in the top 100 of more than

one VIM ranking were defined as variable-shared clusters.

We identified 106 variable-shared clusters comprising 4876

Figure 3. A novel statistical pipeline defines hierarchies among experimental variables.

(a) Schematic diagram illustrating the three-step statistical pipeline. See Text S2 for more details.

(b)–(e) Description of the genotypic (stage and cultivar) and environmental (vintage and location) variable-related cluster of expression. Scatterplot of the 300

clusters according to the rank in (b) VIMc
Stage, (c) VIM

c
Cultivar, (D) VIM

c
Vintage and (e) VIMc

Location (i.e. Rnk_VIM_Stage = rank of clusters according to VIMc
Stage; low val-

ues denote high importance of the stage) and to the loading in the specific rotated principal component (DimRot) (first, second, third and tenth components for

stage, cultivar, vintage and location, respectively). Each dot represents a single cluster, colored according to the cluster homogeneity index, Rc. Relevant exam-

ples of variable-specific clusters are given at the side of each scatter plot. See Data S3 for a complete description of the 300 clusters.
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Figure 4. Characterization of variable-specific clusters.

(a) Venn diagram showing the number of variable-specific and variable-shared clusters.

(b) Summary of the principal properties of each group of clusters. Data S2–S4 provide a complete description of each cluster.

(c)–(e) Characterization of the stage-specific clusters. (c) Bar plot ranking of the top five biological processes based on Gene Ontology (GO) enrichment scores

within the stage-specific cluster genes. (d) Analysis of the expression patterns of the stage-specific cluster genes. The concavity Stage L parameter (Data S2)

indicates the upregulation (red) or downregulation (green) expression trend. (e) Genome-wide distribution of stage-specific genes (white-blue) and all genes

(white-black) in 100-kb windows of non-repetitive DNA. Black dots indicate the site of centromeric repeat sequence. (f), (g) Characterization of the cultivar-speci-

fic clusters.

(f) Bar plot ranking of the top five biological processes based on GO enrichment score within the cultivar-specific cluster genes.

(g) Box plot of transcript levels of genes with copy number variations (left graph, genes absent from Sangiovese; right graph, genes absent from Cabernet

Sauvignon). Center lines show the medians; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend to 5th and 95th

percentiles, outliers are represented by dots; crosses represent sample means (n = 12 left panel, n = 19 right panel).

(h) Bar plot ranking of the top five biological processes based on GO enrichment score within the vintage-specific cluster genes.

(i) Bar plot ranking of the two enriched biological processes based on GO enrichment scores within the location-specific cluster genes. The enriched GO biologi-

cal processes were identified and listed according to their enrichment P-value (P < 0.05). The total number of GO category-related genes within the analyzed

genes query is shown on the side of each bar.
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genes representing 26.9% of all modulated genes (Fig-

ure 4a, b, Data S7). The most important association in

terms of the number of clusters and genes was observed

between the vintage and location variables (39 clusters,

1478 genes), suggesting that the mutual relationships

among different vintages and geographical sites are critical

determinants of berry transcriptomic plasticity (Figure S7,

Text S3). The variable-shared clusters associating cultivar

and vintage, cultivar and location, or cultivar, vintage and

location, represent that part of the grapevine transcriptome

specifically involved in G9E interactions (Figure 5, Data

S7). These associations included 42 clusters and 1718

genes enriched in the functional categories death, cell

death, response to stress, signal transduction, and sec-

ondary metabolic process (Figure 5b–e). Interestingly,

these G9E clusters also featured genes representing the

general phenylpropanoid pathway, lignin biosynthesis,

anthocyanin metabolism, and the production of volatile

metabolites (Text S3).

Next we considered the role of genetic diversity between

and within cultivars as a potential explanation for the dif-

ferences in gene expression profiles in relation to

environmental variables and interactions. Differentially

expressed genes were classified based on the level of hap-

lotype sharing between the Cabernet Sauvignon and San-

giovese cultivars. We found that 966 genes were located in

14 Mb of genomic DNA that is fully conserved between the

cultivars, whereas 10 094 genes were located in 164.4 Mb

in which the two varieties shared one haplotype, and as

many as 15 244 genes were located in 240 Mb with no

haplotype sharing (Figure 6a, Data S8). Cultivar-specific

clusters were significantly enriched in transcripts from

genes with no haplotype sharing (sharing 0) and depleted

in transcripts from genes with haplotype sharing (sharing

1 or 2), whereas stage-specific clusters were significantly

enriched in transcripts from genes with partial haplotype

sharing (Figure 6b). The role of within-cultivar diversity

was considered in more detail by classifying the 18 122

modulated genes according to the zygosity of the corre-

sponding locus in each cultivar (Data S9). A chi-square

analysis revealed that loci that are homozygous in Caber-

net Sauvignon and heterozygous in Sangiovese, or vice

versa, were overrepresented in clusters of transcripts that

explain G9E interactions (Figure 6c).

Figure 5. Characterization of genotype 9 environment (G9E) clusters of gene expression.

(a) Venn diagram highlighting the G9E clusters, cultivar 9 vintage, cultivar 9 location and cultivar 9 vintage 9 location. Data S7 provides a complete description

of each cluster.

(b) Gene Ontology (GO) analysis within the G9E cluster genes. The enriched GO biological processes were identified and listed according to their enrichment

P-value (P < 0.05). The total number of GO category-related genes within the genes query is shown at the side of each bar.

(c)–(e) Examples of G9E clusters of gene expression. (c) Cluster 295 (Rc = 0.77) contains transcripts encoding the PRF disease-resistance protein. (d) Cluster 297

(Rc = 0.89) contains members of the phenylalanine ammonia-lyase gene family. (e) Cluster 300 (Rc = 0.87) contains members of the terpene synthase gene fam-

ily. See Data S3 for a complete description of the 300 clusters.
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Correlation between transcriptomic and climatic/

physiological data unravels the G3E interactions in

grapevine

Relationships between the retrieved transcriptomic data

and environmental data were determined by Spearman’s

correlation analysis of the 48 sampling conditions (two cul-

tivars, four stages, three locations and two vintages) in

terms of both gene expression (the average gene expres-

sion in each of the 300 clusters) and relevant environmental

features. Some physiological/biochemical parameters were

also included to highlight the phenotype-related effects of

G9E interactions. The results are represented by the heat

map in Figure 7(a) (left panel) and the data are shown in

Data S10. The expression profiles of the 300 clusters

showed significant correlation with certain parameters dur-

ing pre-veraison berry development (e.g. total chlorophyll,

carotenoid and organic acid levels, Pn, ET and gs) and others

more relevant during ripening [e.g. total anthocyanin con-

tent, berry weight, total GSR, GDD and heat wave index

(HWI)]. Clusters showing the highest positive or negative

correlations with environmental parameters tended to be

those ranked in the first positions for the VIM of the stage

variable (Figure 7a, right panel). As expected, clusters cor-

relating strongly with pre-veraison parameters were charac-

terized by downregulated expression (negative DimRot1

parameter; Figure 7a, central panel), whereas clusters cor-

relating strongly with post-veraison parameters were char-

acterized by upregulated expression (positive DimRot1

parameter; Figure 7a, central panel). In contrast, parame-

ters calculated as mean values during the 5 days before

each sampling date (temperature-related parameters and

rainfall) showed few high-correlation values with the

expression profiles. Interestingly, the heat map also

revealed several cases of strong correlation for clusters

highly ranked in the VIMs of the cultivar, vintage and loca-

tion variables (Figure 7a, left and right panels), indicating

that these variables show more hidden but still retriev-

able relationships with the environmental/biochemical

Figure 6. Genomic properties of variable-specific and variable-shared clusters of gene expression.

(a) Haplotype sharing between Cabernet Sauvignon and Sangiovese across the 19 chromosomes. Black dots indicate the location of centromeric repeats. See

Data S8 for more details.

(b) Percentage of stage-dependent and cultivar-dependent genes sorted by their level of haplotype sharing. Asterisks indicate a significant difference (chi-square

test, P < 0.01) in the relative abundance of stage-dependent and cultivar-dependent genes and all genes, in regions of haplotype sharing 0, 1 and 2 (ns = not

significant).

(c) Percentage of modulated genes, sorted in classes based on their allelic state in Cabernet Sauvignon and Sangiovese, regardless of their level of haplotype

sharing. ‘Both Homozygous’ = homozygous genes in both varieties; ‘Both Heterozygous’ = heterozygous genes in both varieties; ‘One Homozygous, the Other

Heterozygous’ = genes homozygous in one variety and heterozygous in the other. See Data S9 for more details. Asterisks indicate a significant difference (chi-

square test, P < 0.05) in the relative abundance of each gene class in a specific cluster compared to all genes (ns = not significant).
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parameters. These results prompted us to repeat the corre-

lation analysis separately for the pre-veraison and post-ver-

aison phases and for the Sangiovese and Cabernet

Sauvignon samples, resulting in four correlation matrices

containing 12 experimental observations each: one cultivar,

two stages, three locations and two vintages (Figure S8,

Data S11). We then calculated the subtraction matrices for

the Sangiovese and Cabernet Sauvignon correlation matri-

ces at each developmental phase. This allowed us to

retrieve clusters in which the difference between the two

cultivars differed most significantly in terms of interaction

with the environment. The pre-veraison subtraction matrix

(Figure 7b, Data S12) revealed that temperature, rainfall 5D

(i.e., the mean rainfall value calculated 5 days before each

sampling date) and GSR maximize genotype-dependent

transcriptomic plasticity, whereas the cultivars become

more distinct as maturation proceeded, particularly in terms

of the photosynthesis-related parameters (Pn, ET and gs)

and the reaction to rainfall 5D and heat waves (Figure 7c,

Data S12). For example, in the pre-veraison phase, cluster

no. 92 (Rc = .74), exhibiting a significant negative correla-

tion with Td_5D, Tx_5D and HWI only in Cabernet Sauvignon,

encompassed many transcripts for anthocyanin and flavo-

nol metabolism. Also, cluster 30 (Rc = .74), exhibiting a sig-

nificant negative correlation with the stomatal conductance

gs only in Cabernet Sauvignon, contained the VvNCED1

transcript encoding for enzymes to form the phytohormone

abscisic acid (ABA) (Young et al., 2012), which triggers the

Figure 7. Correlation between transcriptomic and climatic/agricultural data.

(a) Correlation across the whole dataset. Left panel, correlation matrix (Spearman’s coefficient) prepared using the mean standardized expression value of each

of the 300 clusters and climatic/agricultural data recorded during the whole time span of the experiment (48 conditions). Central panel, DimRot1 heat map. Posi-

tive DimRot1 values indicate upregulation trends whereas negative DimRot1 values indicate downregulation trends (see Figure 3b). Right panel, heat map of the

variable importance measure (VIM) ranking positions for each variable. See Data S10 for more details.

(b), (c) Differences in transcriptomic plasticity between the two genotypes in the interaction with the environment. Subtraction matrices of the correlation matri-

ces obtained for (b) the pre-veraison samples and (c) the post-veraison samples. Gray coloring shows where subtraction was not calculated (initial Spearman’s

correlation value < 0.6 in either of the two genotypes). White coloring indicates subtraction value ≤|0.65|. Increasing green and purple intensity indicate subtrac-

tion values >|0.65| for pre-veraison and post-veraison matrices, respectively. Daily mean (Td_5d), daily maximum (Tx_5d), daily minimum (Tm_5d) temperatures,

thermal excursion [(Tx–Tm)_5d], Global Solar Radiation (GSR_5d) and rainfall (Rainfall_5d) were computed within the 5 days prior to each sampling date. GSR

and rainfall were also computed on the whole time span of the experiment (GSR_total and Rainfall_total). HWI, heat wave index; GDD_10C, growing degree

days; SWC, soil water content; Pn, photosynthetic rate; Et, transpiration rate; GS, stomatal conductance; HCA, hydroxycinnamic acid.
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closure of stomatal pores (Daszkowska-Golec and Szarejko,

2013). During the post-veraison phase, Cluster 198

(Rc = .46), containing osmotic-responsive transcripts, exhib-

ited the opposite trend in Sangiovese and Cabernet Sauvi-

gnon in relation to the stomatal conductance gs and HWI,

suggesting a different degree of resistance towards osmotic

stress between the two genotypes. Notably, Clusters 279

(Rc = .90) and 263 (Rc = .82), containing members of the stil-

bene synthase family, scored negative correlations with the

Tx–Tm (Tm being the daily minimum temperature) thermal

interval and HWI, and a positive correlation with the rainfall

parameter only in the Sangiovese cultivar, suggesting this

genotype has a greater capacity to produce stilbenes under

favorable thermal conditions (Figure 7c, Data S12).

DISCUSSION

G9E studies in woody perennial plants are rare because a

precise definition of the E component is often challenging

in field studies (Brosch�e et al., 2005; Holliday et al., 2010;

Travers et al., 2010; Richards et al., 2012; Dal Santo et al.,

2013, 2016b; Hess et al., 2016). We have addressed the lack

of a temporal G9E component (Grishkevich and Yanai,

2013) by providing a time-based approach for both G (fruit

development) and E (vintage), given that both aspects are

important in an environmentally sensitive crop such as

grapevine, particularly in the context of global climate

change. Our experimental design was specifically tailored

to detect differences in plasticity between two grapevine

genotypes (Cabernet Sauvignon and Sangiovese) culti-

vated in three different locations. Various parameters indi-

cated that our sampling procedure in field was accurate;

however, our novel data-mining pipeline was designed to

address the difficulty of collecting uniform developmental

stages in different seasons, at different sites and in differ-

ent varieties. This statistical approach comprises a three-

step screening scheme to remove unwanted sources of

variability in gene expression, the clustering of gene co-

expression profiles based on four different developmental

stages and an estimation of the inner representativeness

of the clusters (i.e. the internal cohesion of each cluster).

These statistical precautions allowed us to focus on the

most important and consistent differences in gene expres-

sion due to the four analyzed variables, minimizing over-

statement of the variability due to unforeseen differences

in the collected developmental stages.

We observed a difference in transcriptomic plasticity

between the two genotypes in response to the environ-

ment, which has been postulated but not empirically

demonstrated in previous studies (Ortega-Regules et al.,

2006; Rustioni et al., 2013; Zenoni et al., 2017). G9E interac-

tions became predominant during fruit maturation, particu-

larly in Sangiovese berries. This is economically the most

important phase of berry development due to the emerging

aromatic profile (Conde et al., 2007). The characteristics of

Cabernet Sauvignon berries were less dependent on

growth conditions and, accordingly, the transcriptome

remained more stable across vintages and locations, sug-

gesting that the limited plasticity may underpin the success

of this cultivar in many different parts of the world. When

designing the experimental layout most of the growing

conditions were set to uniformity across the three sites, but

the rootstock, as Cabernet Sauvignon, was grafted on three

different genotypes. However, they derived from the same

parent species (Vitis berlandieri 9 Vitis riparia), and they

share similar agro/physiological characteristics (Keller,

2015). Rootstocks may have a significant impact on the

interaction between plant and environment, nevertheless

we observed higher transcriptome stability in Cabernet

Sauvignon across different locations than in Sangiovese.

This finding suggests that the rootstock did not significantly

contribute to the variability of berry transcriptome. This cor-

roborates our previous findings demonstrating that envi-

ronmental and growing factors have a greater impact than

the rootstock on transcriptomic plasticity in developing ber-

ries (Dal Santo et al., 2013). DNA methylation analysis also

revealed differences between the genotypes, suggesting

that epigenetic regulation may partially explain the varia-

tion between the genotypes in terms of gene expression in

different environments, as recently postulated in the Shiraz

cultivar (Xie et al., 2017). A recent study based on the bio-

logical material used herein has also suggested that small

RNAs have a buffering effect on transcriptomic plasticity in

the widely cultivated Cabernet Sauvignon cultivar (Paim

Pinto et al., 2016).

We established a novel data-mining pipeline to uncover

relationships among four G and E variables (stage, culti-

var, vintage and location) which revealed inner hierarchies

and interactions, such as vintage 9 location. We found

that 37.5% of all modulated genes were highly canalized

(i.e. expressed in a consistent profile across different

genotypes and environments), representing core functions

that could ultimately be developed into universal markers

for berry development in the field. A further 14.6% of all

modulated genes were genotype-dependent but unaf-

fected by the environment, and were enriched in biotic

stress response functions. Some of these genotype-depen-

dent differences in expression were explained by CNV

and haplotype sharing between cultivars. The expression

of a further 23.83% of the modulated genes was depen-

dent on the vintage, location and vintage 9 location inter-

action, although the vintage and location variables per se

showed only marginal effects on the extent of transcrip-

tome plasticity in both genotypes (9.1% and 6.5% of the

modulated genes, respectively). Indeed, this strong inter-

action indicated that the vintage effect (Jones and Davis,

2000; Dal Santo et al., 2013; Van Leeuwen and Darriet,

2016) may have different molecular outcomes in different

locations.
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The pool of G9E-related genes which showed plasticity

in one genotype but not the other, or different degrees of

plasticity in each genotype, accounted for 9.48% of all

modulated genes. Genes responsible for G9E interactions

may show similar characteristics to purely genotype-

dependent genes, for example they are often non-essential

(Landry et al., 2006; Tirosh et al., 2006; Grishkevich and

Yanai, 2013). Accordingly, we found that many grapevine

G9E-related genes are involved in stress responses, signal

transduction and secondary metabolism. The last of these

indicates that G9E interactions may represent a point of

economic leverage, particularly in speciality crops such as

grapevine that are valued more for characteristics deter-

mined by secondary metabolism than for high yields.

Lastly, genes related to G9E interactions showed different

within-cultivar diversity in the two genotypes, supporting

the hypothesis that heterozygosity may buffer against envi-

ronmental variation by providing an expanded range of

gene expression (Roff, 2005) and that the underlying princi-

ples governing G9E interactions are not simply the combi-

nation of factors influencing genotypic and environmental

variation (Grishkevich et al., 2012).

Finally, our attempt to statistically correlate gene expres-

sion data with the principal agro/physiological and meteo-

rological/environmental parameters allowed us to retrieve

those clusters of gene expression which maximized the dif-

ference between the two cultivars, in terms of the

interaction with the environment. The effort to correlate

large-scale transcriptomic data with such parameters,

recorded in the field during the course of the experiment,

could herald a modern agriculture era.

CONCLUSIONS

The new statistical pipeline described herein, combined

with the observed contribution of genetic diversity to the

different gene expression profiles, supports and augments

previous findings (Dal Santo et al., 2013). First, the tran-

scriptomic plasticity of berries representing different loca-

tions and vintages is underpinned by broad transcriptional

reprogramming. Second, within-cultivar diversity may

modulate gene expression in response to environmental

cues. Third, the location of the vineyard has a minor

impact on the extent of G9E-dependent transcriptome

plasticity in berries, but plays an important role in deter-

mining the performance of each genotype by enhancing

qualitative traits such as the accumulation of secondary

metabolites related to wine aroma and color.

Our study provides a multi-omics approach to separate

the many layers of regulations that determine G9E inter-

actions in field-grown plants. Given that the unprece-

dented rate of climate change will challenge the

traditional concept of a geographically determined terroir

(White et al., 2009), our study helps to provide a broader

molecular definition of the terroir concept which will con-

tribute to sustainable viticulture, wine production and

marketing.

EXPERIMENTAL PROCEDURES

Description of experimental sites

Grapevine berry samples were collected from 7–10-year-old vine-
yards located in Bolgheri (wine cellar Podere Guado al Melo, Tus-
cany coast), Montalcino (wine cellar Banfi Srl, Tuscany
Apennines) and Riccione (wine cellar Valbruna Soc. Coop. Agri-
cola, Romagna coast) during the 2011 and 2012 growing seasons.
Cabernet Sauvignon and Sangiovese berries were sampled from
adjacent vineyards at each experimental site to avoid major envi-
ronmental differences between cultivars (Figure 1a). The most rel-
evant features of each vineyard are summarized in Table S1.

Meteorological data collection and analysis

The air temperature of the vineyard above the canopy layer was
monitored during the 2011 and 2012 growing seasons at all three
sites using a HOBO U23 Pro v2 thermistor thermometer (Onset
Computer Corporation, http://www.onsetcomp.com/). Td, Tx and
Tm were extracted from hourly values. Daily GSR was recon-
structed by applying the Hargreaves formula to Tx and Tm values
(Hargreaves and Samani, 1985). Growing degree days at base
10°C (GDD_10C) was calculated by summing the average daily
temperatures from June to September and subtracting 10°C per
day (negative values were recorded as zero). Rainfall data were
collected from the pluviometric station nearest to each vineyard.
The AWC was estimated as previously described (Saxton and
Rawls, 2006), taking into account the soil type and rainfall. For cor-
relation analysis with transcriptomic data, the Td, Tx, Tm, Tx–Tm,
GSR and rainfall parameters were also computed within the
5 days before each sampling date. The HWI was calculated as the
sum of Tx above 30°C within two sampling dates.

Berry sampling

Berries were collected at four developmental stages: PS (5-mm
diameter, BBCH 75), PV (the majority of berries touching, BBCH
79), MR (berries developing color, BBCH 83) and FR (berries ripe
for harvest, BBCH 89) (Lorenz et al., 1995) at the same time of day
(about 11 a.m.) (Figure 1b). The sampling dates are reported in
Table S2. Three biological replicates of 600 berries per stage were
collected from upper, central and lower parts of the cluster and
from the sun-exposed and shaded sides. The samples were
divided into two groups and frozen in liquid nitrogen: 400 berries
for metabolic analysis, stored at –20°C, and 200 berries for tran-
scriptomic/epigenomic analysis, stored at –80°C.

Fruit composition and yield parameters

The FR berries were harvested from six vines per variety at each
site. The total soluble solids content of the pressed juice (°Brix)
was determined with a refractrometer (Global Water, http://
www.globalw.com/). We also measured the pH using a pH meter
(Hanna Instruments, https://hannainst.com/) and titratable acidity
(expressed as grams of tartaric acid per liter of juice, with 0.1 M
NaOH and bromothymol blue as indicators) using an automatic
titration system (Hanna Instruments). The mean berry weight was
determined based on 50 berries, and we also determined the yield
per vine and number of clusters per vine.
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Physiological data

Gas exchange measurements were carried out at the same time of
day on each sampling date (at around 12 p.m.). Pn, ET and gs were
recorded using a CIRAS-2 portable photosynthesis system (PP
Systems Ltd, http://ppsystems.com/). Ten stable values were
recorded from different plants. The stem water potential (SWP) of
non-transpiring mature leaves was monitored using a Scholander-
pressure chamber (Soil Moisture Equipment Corporation, http://
www.soilmoisture.com/) when the berries reached the FR stage.
Ten mature, undamaged, sun-exposed leaves were selected and
placed into a plastic bag wrapped with aluminum foil at least 1 h
before measurement. The SWC at 20–40 and 60–80 cm was deter-
mined by collecting soil samples in triplicate using a soil auger,
oven drying at 110°C for 24 h and calculating the water content by
comparison with the fresh weight. For correlation analysis with
transcriptomic data, the mean of the 20–40 cm and 60–80 cm
SWC values was used. The most relevant physiological data are
summarized in Figure S9 (Cabernet Sauvignon) and Figure S10
(Sangiovese).

Metabolic composition of berries

The carotenoid and chlorophyll content of the berry samples was
determined by high-performance liquid chromatography (HPLC)
as previously described (Mendes-Pinto et al., 2004) with minor
modifications (Kamffer et al., 2010). The norisoprenoid content
was determined during ripening by solid-phase micro-extraction
and gas chromatography/mass spectrometry (GC-MS) as previ-
ously described (De Lorenzis et al., 2017). The flavonol and HCA
content was determined by HPLC as previously described (De
Lorenzis et al., 2017). In each case, 50 berries were used for
extraction.

RNA extraction and microarray hybridization

Total RNA was extracted from approximately 400 mg of berry
pericarp tissue (berries without seeds) ground in liquid nitrogen,
using the SpectrumTM Plant Total RNA kit (Sigma-Aldrich, http://
www.sigmaaldrich.com/) (Dal Santo et al., 2016a). We hybridized
5 lg of total RNA per sample to a NimbleGen microarray
090818_Vitus_exp_HX12 chip (Roche, NimbleGen Inc.,) contain-
ing probes representing 29 549 predicted grapevine genes cover-
ing about 98.6% of the genes predicted in the V1 annotation of
the 12 9 grapevine genome. Each microarray was scanned
using an Axon GenePix 4400A (Molecular Devices, https://
www.moleculardevices.com/) at 532 nm (Cy3 absorption peak)
and GenePix Pro7 software (Molecular Devices) according to the
manufacturer’s instructions. Images were analyzed using Nim-
bleScan v2.5 software (Roche, http://www.roche.com/), which
produces Pair Files containing the raw signal intensity data for
each probe and Calls Files with normalized expression data
derived from the average of the intensities of the four probes
for each gene.

Statistical analysis of microarray data

Correlation matrices were prepared using R software and Pearson’
correlation coefficient as the statistical metric to compare the val-
ues of the whole transcriptome in all samples using the average
value of the three biological replicates. Correlation values were
converted into distance coefficients to define the height scale of
the dendrogram. A non-parametric Kruskal–Wallis test (false dis-
covery rate 0.01%, 24 classes, Benjamini–Hochberg correction)
was applied to each of two 72-sample genotype-specific datasets.

After assessing the unimodal distribution of the fluorescent
intensities (Fasoli et al., 2012; Dal Santo et al., 2013) (Figure S2)
with R software, a two-sided two-way ANOVA (1000 permutations,
P < 0.01, vintage and location classes) was applied to each dataset
using TMeV v4.8.

Correlation between transcriptomic and climatic/

agricultural data

Correlation matrices were prepared using Spearman’s correlation
coefficient in R software to compare trends in the mean expres-
sion values of each of the 300 clusters (Data S3) with the trends of
climatic and agricultural parameters. A first general matrix com-
pared 48 conditions (two cultivars, four stages, three locations
and two vintages) whereas four genotype-specific 12-condition
matrices were prepared for the separate analysis of pre-veraison
and post-veraison samples (one cultivar, two stages, three loca-
tions and two vintages). Subtraction matrices were generated for
the latter Sangiovese and Cabernet Sauvignon correlation matri-
ces. The mathematical operation was performed only on Spear-
man’s correlation values ≥0.6, and only subtraction values ≥|0.65|
were considered biologically relevant.

Design of a statistical pipeline to inspect G3E interactions

using microarray data

A detailed description of the statistical pipeline is provided in Text
S2. A Venn diagram was prepared using the top 100 scoring clus-
ters in each variable’s VIM ranking (Data S2) using Venny v2.1
(http://bioinfogp.cnb.csic.es/tools/venny/). Gene Ontology annota-
tion was applied using the BiNGO v2.3 plug-in tool in Cytoscape
v2.6 with PlantGOslim categories (Maere et al., 2005). Overrepre-
sented PlantGOslim categories were identified using a hypergeo-
metric test with a significance threshold of 0.05. Bar plots ranking,
when possible, the top five biological processes were prepared
based on enrichment scores [–log10 (P-value)].

RNA-seq and data analysis

The PV and MR triplicate samples (two cultivars, three locations
and two vintages) yielded 72 non-directional cDNA libraries, which
were prepared from 2.5 lg of total RNA using the Illumina TruSeq
RNA Sample preparation protocol (Illumina Inc., https://www.illu
mina.com/) according to the manufacturer’s instructions. Single-
end reads of 100 nucleotides (nt) were obtained using an Illumina
Hiseq 2000 sequencer, and sequencing data were generated using
the base-calling software Illumina Casava v1.8.2
(31 091 566 � 6 162 118 reads per sample). The reads were
aligned onto the PN40024 12X reference genome (Jaillon et al.,
2007) using TopHat v2.0.9 (Kim et al., 2013) with default parame-
ters. An average of 86.91% of reads were mapped for each sample
(Table S8). Transcripts were assembled from mapped reads, and
normalized transcript abundance measurements expressed in
FPKM values were prepared using Cufflinks v2.1.1 (Trapnell et al.,
2010) resulting in a non-redundant list of 29 971 transcripts.

Reduced representation bisulfite sequencing (RRBS) and

data analysis

The PV and MR duplicate samples (two cultivars, three locations
and two vintages) were used to prepare 48 RRBS libraries as pre-
viously reported, with modifications (Gu et al., 2011). Briefly,
200 ng of genomic DNA was digested with TaqI (NEB, https://
www.neb.com/) at 65°C for 2 h. After purification using the QIA-
quick PCR Purification kit (Qiagen, http://www.qiagen.com/),
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fragment ends were repaired and ligated using adapters provided
in the Ovation Ultralow Methyl-Seq DR Multiplex Kit (NuGEN,
https://www.nugen.com/). Ligated products corresponding to 100–
1500-bp DNA fragments were purified by 2% low-range agarose
gel electrophoresis before final end-repair using the same NuGEN
kit. Bisulfite conversion was conducted using the EpiTect Fast
DNA Bisulfite Kit (Qiagen). The final RRBS libraries were gener-
ated by PCR and validated using an Agilent 2100 Bioanalyzer (Agi-
lent Technologies, https://www.agilent.com/). Libraries were
sequenced using the Illumina HiSeq2500 platform in paired-end
125-bp runs. Raw sequencing data quality was evaluated using
FastQC software (Babraham Institute, https://www.babraham.ac.
uk/). Adaptor sequences were removed using TRIM GALORE
(Babraham Institute) with default settings and hard-trimmed from
position 1–5 nt to improve data quality. Cleaned reads were
aligned to the grapevine reference genome (Jaillon et al., 2007)
using the bisulfite alignment program Bismark v0.14.5 (Krueger
and Andrews, 2011) yielding an average of around 15 million read
pairs uniquely aligned per sample. Alignments were deduplicated
and converted into single-cytosine methylation maps using the
Bismark package with default settings. In total about 975 000 CG
sites, about 1 million CHG sites and about 5.8 million CHH sites
were covered by at least one read on average per sample. Cyto-
sine positions identified as C?T or G?A polymorphisms were
discarded to remove false bisulfite conversion signals and remain-
ing cytosine residues were filtered by minimum coverage in all 48
samples with different thresholds depending on sequence context
(CG = 4, CHG =10 and CHH = 10). The final set of cytosine resi-
dues was analyzed separately by context using the methylKit R
package (Akalin et al., 2012), which identified 4696 CG sites, 4737
CHG sites and 14 179 CHH sites that could be compared among
all the 48 samples. Analysis of differential methylation was based
on logistic regression, and k-means and unscaled PCA were
applied to the set of shared CG, CHG and CHH sites using the R
functions kmeans() and prcomp(), respectively. Significant associ-
ations between principal components and experimental covariates
(biological replicate, vintage, cultivar, developmental stage and
location) were identified using a Pearson’s correlation test.

Haplotype sharing

Genomic DNA from each cultivar was sequenced on Illumina
HiSeq2500 sequencing apparatus to produce 2 9 100 paired end
reads that were aligned to the 12X V0 version of the grapevine ref-
erence genome (Jaillon et al., 2007) using BWA (Li and Durbin,
2009) with default parameters. Single nucleotide polymorphisms
(SNPs) were called using GATK Unified Genotyper variant discov-
ery (McKenna et al., 2010; DePristo et al., 2011). SNPs with phred-
scaled quality score < 50 or minimum coverage < 5 reads or read
coverage ≤0.5 9 or ≥1.5 9 the modal coverage were removed.
Heterozygous genotypes were called when the reference/alternate
allele ratio was ≥0.25 and ≤0.75. Haplotype sharing was computed
in 2367 genome windows of 100 kb of putatively single-copy DNA,
obtained after masking transposable elements and other five
repeats. The identity-by-descent (IBD) in each genome window
was calculated with a slightly modified version of the identity-by-
state ratio (IBSRH) method used in citrus (Wu et al., 2014) with the
following thresholds: IBD = 0 if IBSRH < 0.95 and genotypic dis-
tance (D) > 0.025; IBD = 1 if IBSRH ≥ 0.95 and D > 0.025; IBD = 2 if
IBSRH ≥ 0.95 and D ≤ 0.025. IBSRH and D were calculated using
the following formulae: IBSRH = (IBS2 + IBS1)/(IBS2 + IBS1 +
IBS0); D = [(IBS1 9 0.5) + IBS0]/(IBS0 + IBS1 + IBS2 + no. of invar-
iant sites). We defined subsets of homozygous or heterozygous
genes based on SNP frequencies in the predicted transcribed por-
tion of the gene, and up to 2 kb upstream of the start site. We

estimated an error rate of 0.004 heterozygous SNP calls in genes
located in genomic windows with complete haplotype sharing
between PN40024 and Cabernet Sauvignon/Sangiovese. We there-
fore classified as homozygous all genes with <0.004 heterozygous
SNPs per mappable site. The remaining genes were classified as
heterozygous. Windows containing centromeric repeats and adja-
cent windows with >50% repetitive DNA were classified as peri-
centromeric regions. All other windows were assigned to
chromosome arms.

Copy number variants

Depth of coverage was analyzed in non-overlapping windows of
variable size, containing a constant number of 1500 mappable
reads. To define these windows, wgsim (https://github.com/lh3/
wgsim) was used to simulate 100 million 100-bp-long reads from
the grapevine reference genome, with a mean insert size of
500 bp (Jaillon et al., 2007). Simulated reads were aligned to the
reference genome using BWA (Li and Durbin, 2009) with default
parameters, and duplicated sequences were removed with the
SAMtools rmdup utility (Li et al., 2009). The number of uniquely
mapped paired reads was used to define window sizes. The aver-
age window size for 1500 mappable reads was 4.6 kb. In each win-
dow, we calculated the log2 ratio between the number of mapped
reads in the reference genome and the number of mapped reads
in the Cabernet Sauvignon or Sangiovese genomes. The ratios
were normalized on the basis of the total number of paired reads
mapped in each variety and were used as an input for the binary
circular segmentation implemented in DNAcopy (Olshen et al.,
2004). The R package edgeR (Robinson et al., 2010) was used to
estimate the significance of the log2 ratio in each window within
the segments identified by DNAcopy. Segments with a median
significance <0.05 were selected as copy number variants. Seg-
ments with a log2 ratio of 0.5–2.5 were classified as hemizygous,
and those with a log2 ratio of >2.5 were classified as deleted.
Across the 19 grapevine chromosomes, 39.45 and 35.41 Mb of
genomic DNA was affected by CNV in Cabernet Sauvignon and
Sangiovese, respectively.

Statistical analysis

The yield, fruit composition, HPLC and GC-MS data were ana-
lyzed using SPSS statistical software vPASW Statistics 22 (SPSS
Inc., http://www.spss.com/). ANOVA was used to test the main
effects (cultivar, location and vintage) and their interactions.
Means were compared using Duncan’s test at P < 0.05. The data
were plotted using SigmaPlot software v11 (Systat Software,
https://systatsoftware.com/). A chi-square test was used to com-
pare genomic distribution frequencies (v2 > 0.01 unless other-
wise specified).
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and Cabernet Sauvignon are available at NCBI, BioProject

ID SRP106422.
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