990 research outputs found

    Non-Gaussian Resistance Noise near Electrical Breakdown in Granular Materials

    Full text link
    The distribution of resistance fluctuations of conducting thin films with granular structure near electrical breakdown is studied by numerical simulations. The film is modeled as a resistor network in a steady state determined by the competition between two biased processes, breaking and recovery. Systems of different sizes and with different levels of internal disorder are considered. Sharp deviations from a Gaussian distribution are found near breakdown and the effect increases with the degree of internal disorder. However, we show that in general this non-Gaussianity is related to the finite size of the system and vanishes in the large size limit. Nevertheless, near the critical point of the conductor-insulator transition, deviations from Gaussianity persist when the size is increased and the distribution of resistance fluctuations is well fitted by the universal Bramwell-Holdsworth-Pinton distribution.Comment: 8 pages, 6 figures; accepted for publication on Physica

    Universal Fluctuations of the Danube Water Level: a Link with Turbulence, Criticality and Company Growth

    Full text link
    A global quantity, regardless of its precise nature, will often fluctuate according to a Gaussian limit distribution. However, in highly correlated systems, other limit distributions are possible. We have previously calculated one such distribution and have argued that this function should apply specifically, and in many instances, to global quantities that define a steady state. Here we demonstrate, for the first time, the relevance of this prediction to natural phenomena. The river level fluctuations of the Danube are observed to obey our prediction, which immediately establishes a generic statistical connection between turbulence, criticality and company growth statistics.Comment: 5 pages, 1 figur

    Competition Between Exchange and Anisotropy in a Pyrochlore Ferromagnet

    Full text link
    The Ising-like spin ice model, with a macroscopically degenerate ground state, has been shown to be approximated by several real materials. Here we investigate a model related to spin ice, in which the Ising spins are replaced by classical Heisenberg spins. These populate a cubic pyrochlore lattice and are coupled to nearest neighbours by a ferromagnetic exchange term J and to the local axes by a single-ion anisotropy term D. The near neighbour spin ice model corresponds to the case D/J infinite. For finite D/J we find that the macroscopic degeneracy of spin ice is broken and the ground state is magnetically ordered into a four-sublattice structure. The transition to this state is first-order for D/J > 5 and second-order for D/J < 5 with the two regions separated by a tricritical point. We investigate the magnetic phase diagram with an applied field along [1,0,0] and show that it can be considered analogous to that of a ferroelectric.Comment: 7 pages, 4 figure

    The Effect of Outdoor and Indoor Group Exercise Classes on Psychological Stress in College Students: A Pilot Study with Randomization

    Get PDF
    International Journal of Exercise Science 16(5): 1012-1024, 2023. Emerging evidence suggests that outdoor group exercise may reduce stress more than indoor group exercise because the outdoor environment provides unique mental health benefits. Stress leads to illnesses and diseases, but exercise mitigates harmful impacts. This study explored differences in perceived stress and outdoor physical activity participation among college students in an indoor or outdoor group exercise class. Data were collected pre-, mid- (after four sessions), and post-intervention (after eight sessions). Seventeen participants indicated an interest in the study, but 13 signed up. Participants completed a four-week group exercise intervention that met twice weekly in outdoor and indoor conditions. Mixed ANOVAs with Tukey post hoc tests determined between-group differences in perceived stress and outdoor physical activity levels. Partial eta-squared (η2p) estimated effect sizes. Significant differences in perceived stress scores existed across time for the whole sample [f(2, 12) = 48.359, p \u3c 0.001, η2p = 0.890] and for the interaction between time and condition [f(2, 12) = 10.051, p = 0.003, η2p = 0.626]. Post hoc analysis revealed that the outdoor group’s perceived stress (p \u3c 0.001) was reduced more than the indoor group post-intervention (p = 0.028)

    Dynamic behavior of magnetic avalanches in the spin-ice compound Dy2_2Ti2_2O7_7

    Get PDF
    Avalanches of the magnetization, that is to say an abrupt reversal of the magnetization at a given field, have been previously reported in the spin-ice compound Dy2_{2}Ti2_{2}O7_{7}. This out-of-equilibrium process, induced by magneto-thermal heating, is quite usual in low temperature magnetization studies. A key point is to determine the physical origin of the avalanche process. In particular, in spin-ice compounds, the origin of the avalanches might be related to the monopole physics inherent to the system. We have performed a detailed study of the avalanche phenomena in three single crystals, with the field oriented along the [111] direction, perpendicular to [111] and along the [100] directions. We have measured the changing magnetization during the avalanches and conclude that avalanches in spin ice are quite slow compared to the avalanches reported in other systems such as molecular magnets. Our measurements show that the avalanches trigger after a delay of about 500 ms and that the reversal of the magnetization then occurs in a few hundreds of milliseconds. These features suggest an unusual propagation of the reversal, which might be due to the monopole motion. The avalanche fields seem to be reproducible in a given direction for different samples, but they strongly depend on the initial state of magnetization and on how the initial state was achieved.Comment: 11 pages, 14 figure

    Temperature Dependence of the Magnetic Penetration Depth in the Vortex State of the Pyrochlore Superconductor, Cd2Re2O7

    Get PDF
    We report transverse field and zero field muon spin rotation studies of the superconducting rhenium oxide pyrochlore, Cd2Re2O7. Transverse field measurements (H=0.007 T) show line broadening below Tc, which is characteristic of a vortex state, demonstrating conclusively the type-II nature of this superconductor. The penetration depth is seen to level off below about 400 mK (T/Tc~0.4), with a rather large value of lambda (T=0)~7500A. The temperature independent behavior below ~ 400 mK is consistent with a nodeless superconducting energy gap. Zero-field measurements indicate no static magnetic fields developing below the transition temperature.Comment: 4 pages, 4 figures, REVTEX 4, submitted to PR

    Overlap Distribution of the Three-Dimensional Ising Model

    Full text link
    We study the Parisi overlap probability density P_L(q) for the three-dimensional Ising ferromagnet by means of Monte Carlo (MC) simulations. At the critical point P_L(q) is peaked around q=0 in contrast with the double peaked magnetic probability density. We give particular attention to the tails of the overlap distribution at the critical point, which we control over up to 500 orders of magnitude by using the multi-overlap MC algorithm. Below the critical temperature interface tension estimates from the overlap probability density are given and their approach to the infinite volume limit appears to be smoother than for estimates from the magnetization.Comment: 7 pages, RevTex, 9 Postscript figure

    Magnetocaloric Study of Spin Relaxation in `Frozen' Dipolar Spin Ice Dy2Ti2O7

    Full text link
    The magnetocaloric effect of polycrystalline samples of pure and Y-doped dipolar spin ice Dy2Ti2O7 was investigated at temperatures from nominally 0.3 K to 6 K and in magnetic fields of up to 2 T. As well as being of intrinsic interest, it is proposed that the magnetocaloric effect may be used as an appropriate tool for the qualitative study of slow relaxation processes in the spin ice regime. In the high temperature regime the temperature change on adiabatic demagnetization was found to be consistent with previously published entropy versus temperature curves. At low temperatures (T < 0.4 K) cooling by adiabatic demagnetization was followed by an irreversible rise in temperature that persisted after the removal of the applied field. The relaxation time derived from this temperature rise was found to increase rapidly down to 0.3 K. The data near to 0.3 K indicated a transition into a metastable state with much slower relaxation, supporting recent neutron scattering results. In addition, magnetic dilution of 50 % concentration was found to significantly prolong the dynamical response in the milikelvin temperature range, in contrast with results reported for higher temperatures at which the spin correlations are suppressed. These observations are discussed in terms of defects and loop correlations in the spin ice state.Comment: 9 figures, submitted to Phys. Rev.

    Longitudinal changes in dietary patterns during adult life

    Full text link
    Despite the growing interest in dietary patterns, there have been few longitudinal investigations. The objective of the present study was to extend an earlier method of dietary pattern assessment to longitudinal binary data and to assess changes in patterns over time and in relation to socio-demographic covariates. A prospective national cohort of 1265 participants completed a 5 d food diary at three time-points during their adult life (at age 36 years in 1982, 43 years in 1989 and 53 years in 1999). Factor analysis identified three dietary patterns for women (fruit, vegetables and dairy; ethnic foods and alcohol; meat, potatoes and sweet foods) and two patterns in men (ethnic foods and alcohol; mixed). Trends in dietary pattern scores were calculated using random effects models. Marked changes were found in scores for all patterns between 1989 and 1999, with only the meat, potatoes and sweet foods pattern in women recording a decline. In a multiple variable model that included the three time-points, socio-demographic variables and BMI time-dependent covariates, both non-manual social class and higher education level were also strongly associated with the consumption of more items from the ethnic foods and alcohol pattern and the mixed pattern for men (P&lt;0[middle dot]0001) and the fruit, vegetables and dairy pattern and the ethnic foods and alcohol pattern for women (P&lt;0[middle dot]01). In conclusion, longitudinal changes in dietary patterns and across socio-economic groups can assist with targeting public health initiatives by identifying stages during adult life when interventions to improve diet would be most beneficial to health.<br /

    Long Range Order at Low Temperature in Dipolar Spin Ice

    Full text link
    Recently it has been suggested that long range magnetic dipolar interactions are responsible for spin ice behavior in the Ising pyrochlore magnets Dy2Ti2O7{\rm Dy_{2}Ti_{2}O_{7}} and Ho2Ti2O7{\rm Ho_{2}Ti_{2}O_{7}}. We report here numerical results on the low temperature properties of the dipolar spin ice model, obtained via a new loop algorithm which greatly improves the dynamics at low temperature. We recover the previously reported missing entropy in this model, and find a first order transition to a long range ordered phase with zero total magnetization at very low temperature. We discuss the relevance of these results to Dy2Ti2O7{\rm Dy_{2}Ti_{2}O_{7}} and Ho2Ti2O7{\rm Ho_{2}Ti_{2}O_{7}}.Comment: New version of the manuscript. Now contains 3 POSTSCRIPT figures as opposed to 2 figures. Manuscript contains a more detailed discussion of the (i) nature of long-range ordered ground state, (ii) finite-size scaling results of the 1st order transition into the ground state. Order of authors has been changed. Resubmitted to Physical Review Letters Contact: [email protected]
    • …
    corecore