165 research outputs found

    Qatar-1b: a hot Jupiter orbiting a metal-rich K dwarf star

    Full text link
    We report the discovery and initial characterisation of Qatar-1b, a hot Jupiter orbiting a metal-rich K dwarf star, the first planet discovered by the Alsubai Project exoplanet transit survey. We describe the strategy used to select candidate transiting planets from photometry generated by the Alsubai Project instrument. We examine the rate of astrophysical and other false positives found during the spectroscopic reconnaissance of the initial batch of candidates. A simultaneous fit to the follow-up radial velocities and photometry of Qatar-1b yield a planetary mass of 1.09+/-0.08 Mjup and a radius of 1.16+/-0.05 Rjup. The orbital period and separation are 1.420033 days and 0.0234 AU for an orbit assumed to be circular. The stellar density, effective temperature and rotation rate indicate an age greater than 4 Gyr for the system.Comment: 8 pages, 5 figures, submitted to Monthly Notices of the Royal Astronomical Societ

    The Origin of the Bifurcation in the Sagittarius Stream

    Full text link
    The latest Sloan Digital Sky Survey data reveal a prominent bifurcation in the distribution of debris of the Sagittarius dwarf spheroidal (Sgr) beginning at a right ascension of roughly 190 degrees. Two branches of the stream (A and B) persist at roughly the same heliocentric distance over at least 50 degrees of arc. There is also evidence for a more distant structure (C) well behind the A branch. This paper provides the first explanation for the bifurcation. It is caused by the projection of the young leading (A) and old trailing (B) tidal arms of the Sgr, whilst the old leading arm (C) lies well behind A. This explanation is only possible if the halo is close to spherical, as the angular difference between the branches is a measure of the precession of the orbital plane.Comment: ApJ, in pres

    A systematic fitting scheme for caustic-crossing microlensing events

    Get PDF
    We outline a method for fitting binary-lens caustic-crossing microlensing events based on the alternative model parameterisation proposed and detailed in Cassan (2008). As an illustration of our methodology, we present an analysis of OGLE-2007-BLG-472, a double-peaked Galactic microlensing event with a source crossing the whole caustic structure in less than three days. In order to identify all possible models we conduct an extensive search of the parameter space, followed by a refinement of the parameters with a Markov Chain-Monte Carlo algorithm. We find a number of low-chi2 regions in the parameter space, which lead to several distinct competitive best models. We examine the parameters for each of them, and estimate their physical properties. We find that our fitting strategy locates several minima that are difficult to find with other modelling strategies and is therefore a more appropriate method to fit this type of events.Comment: 12 pages, 11 figure

    A Jovian-mass Planet in Microlensing Event OGLE-2005-BLG-071

    Full text link
    We report the discovery of a several-Jupiter mass planetary companion to the primary lens star in microlensing event OGLE-2005-BLG-071. Precise (<1%) photometry at the peak of the event yields an extremely high signal-to-noise ratio detection of a deviation from the light curve expected from an isolated lens. The planetary character of this deviation is easily and unambiguously discernible from the gross features of the light curve. Detailed modeling yields a tightly-constrained planet-star mass ratio of q=m_p/M=0.0071+/-0.0003. This is the second robust detection of a planet with microlensing, demonstrating that the technique itself is viable and that planets are not rare in the systems probed by microlensing, which typically lie several kpc toward the Galactic center.Comment: 4 pages. Minor changes. Accepted for publication in ApJ Letter

    Microlens OGLE-2005-BLG-169 Implies Cool Neptune-Like Planets are Common

    Full text link
    We detect a Neptune mass-ratio (q~8e-5) planetary companion to the lens star in the extremely high-magnification (A~800) microlensing event OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M~0.5 M_sun implying a planet mass of ~13 M_earth and projected separation of ~2.7 AU. When intensely monitored over their peak, high-magnification events similar to OGLE-2005-BLG-169 have nearly complete sensitivity to Neptune mass-ratio planets with projected separations of 0.6 to 1.6 Einstein radii, corresponding to 1.6--4.3 AU in the present case. Only two other such events were monitored well enough to detect Neptunes, and so this detection by itself suggests that Neptune mass-ratio planets are common. Moreover, another Neptune was recently discovered at a similar distance from its parent star in a low-magnification event, which are more common but are individually much less sensitive to planets. Combining the two detections yields 90% upper and lower frequency limits f=0.37^{+0.30}_{-0.21} over just 0.4 decades of planet-star separation. In particular, f>16% at 90% confidence. The parent star hosts no Jupiter-mass companions with projected separations within a factor 5 of that of the detected planet. The lens-source relative proper motion is \mu~7--10 mas/yr, implying that if the lens is sufficiently bright, I<23.8, it will be detectable by HST by 3 years after peak. This would permit a more precise estimate of the lens mass and distance, and so the mass and projected separation of the planet. Analogs of OGLE-2005-BLG-169Lb orbiting nearby stars would be difficult to detect by other methods of planet detection, including radial velocities, transits, or astrometry.Comment: Submitted to ApJ Letters, 9 text pages + 4 figures + 1 tabl

    Light and Motion in SDSS Stripe 82: The Catalogues

    Full text link
    We present a new public archive of light-motion curves in Sloan Digital Sky Survey (SDSS) Stripe 82, covering 99 deg in right ascension from RA = 20.7 h to 3.3 h and spanning 2.52 deg in declination from Dec = -1.26 to 1.26 deg, for a total sky area of ~249 sq deg. Stripe 82 has been repeatedly monitored in the u, g, r, i and z bands over a seven-year baseline. Objects are cross-matched between runs, taking into account the effects of any proper motion. The resulting catalogue contains almost 4 million light-motion curves of stellar objects and galaxies. The photometry are recalibrated to correct for varying photometric zeropoints, achieving ~20 mmag and ~30 mmag root-mean-square (RMS) accuracy down to 18 mag in the g, r, i and z bands for point sources and extended sources, respectively. The astrometry are recalibrated to correct for inherent systematic errors in the SDSS astrometric solutions, achieving ~32 mas and ~35 mas RMS accuracy down to 18 mag for point sources and extended sources, respectively. For each light-motion curve, 229 photometric and astrometric quantities are derived and stored in a higher-level catalogue. On the photometric side, these include mean exponential and PSF magnitudes along with uncertainties, RMS scatter, chi^2 per degree of freedom, various magnitude distribution percentiles, object type (stellar or galaxy), and eclipse, Stetson and Vidrih variability indices. On the astrometric side, these quantities include mean positions, proper motions as well as their uncertainties and chi^2 per degree of freedom. The here presented light-motion curve catalogue is complete down to r~21.5 and is at present the deepest large-area photometric and astrometric variability catalogue available.Comment: MNRAS accepte

    OGLE-2005-BLG-153: Microlensing Discovery and Characterization of A Very Low Mass Binary

    Get PDF
    The mass function and statistics of binaries provide important diagnostics of the star formation process. Despite this importance, the mass function at low masses remains poorly known due to observational difficulties caused by the faintness of the objects. Here we report the microlensing discovery and characterization of a binary lens composed of very low-mass stars just above the hydrogen-burning limit. From the combined measurements of the Einstein radius and microlens parallax, we measure the masses of the binary components of 0.10±0.01 M0.10\pm 0.01\ M_\odot and 0.09±0.01 M0.09\pm 0.01\ M_\odot. This discovery demonstrates that microlensing will provide a method to measure the mass function of all Galactic populations of very low mass binaries that is independent of the biases caused by the luminosity of the population.Comment: 6 pages, 3 figures, 1 tabl

    The Hercules-Aquila Cloud

    Full text link
    We present evidence for a substantial overdensity of stars in the direction of the constellations of Hercules and Aquila. The Cloud is centered at a Galactic longitude of about 40 degrees and extends above and below the Galactic plane by at least 50 degrees. Given its off-centeredness and height, it is unlikely that the Hercules-Aquila Cloud is related to the bulge or thick disk. More likely, this is a new structural component of the Galaxy that passes through the disk. The Cloud stretches about 80 degrees in longitude. Its heliocentric distance lies between 10 and 20 kpc so that the extent of the Cloud in projection is roughly 20 kpc by 15 kpc. It has an absolute magnitude of -13 and its stellar population appears to be comparable to, but somewhat more metal-rich than, M92.Comment: ApJ (Letters), in pres
    corecore