47 research outputs found

    Developing innovative systems for reinforced masonry walls

    Get PDF
    The Commission of the European Communities has recently funded a CRAFT research project aimed at developing innovative systems for load and non-load-bearing reinforced masonry walls. The project involves twelve partners coming from four different European countries, among which there are universities and research centres, small and medium enterprises for the production of clay and concrete units and mortars, a company for advanced metal products and industrial associations of brick and block producers. The development of the reinforced masonry walls is based on the advancement of vertical reinforcement and fastenings, of mortar and concrete and on their integration with special clay and concrete blocks for the definition of new construction systems. The foreseen advantages are: new possibilities for masonry; more economical construction; quality increase for masonry walls; crack-free and earthquake resistant construction. The project follows three steps: assessment of the technical and economical feasibility of the envisaged construction technologies by means of extensive experimental and numerical activities; construction of prototypes as demonstration of the proposed technologies and materials; in situ testing to completely validate the systems. In the present contribution, an overview of the main objectives and steps of the project is given. Furthermore, the different construction systems that are being developed and designed are described. The main fields of application and the main technical problems encountered for the different construction systems is described, together with the experimental program outlined in order to characterize their mechanical behaviour under different serviceability and ultimate conditions

    Examination at a Material and Structural Level of the Fatigue Life of Beams Strengthened with Mineral or Epoxy Bonded FRPs: The State of the Art

    Full text link
    This paper presents a state of the art review of different material combinations and applications of mineral-based and epoxy-based bonded Fiber Reinforced Polymers (FRP), used for the strengthening of concrete structures subjected to fatigue loading. In this review, models of the fatigue life at the material and structural level are presented. This study examines the mechanical behavior of the FRP-material, surface bonding behavior and concrete beams strengthened under fatigue loading with different types of FRP-systems. The parameters that are investigated are applied load value, time dependent effects, type of strengthened structures (shear, flexural or combined) and the configuration of sheets or plates. The building codes and researchers' recommendations are also discussed. As a result of this review, the reader will obtains an overview of suitable materials and methods for strengthening structures subjected to fatigue loading by referring to the estimated fatigue life of material and strengthening structures at various applied stress levels.Validerad; 2013; 20130823 (thojoh

    The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes

    Get PDF
    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease

    Quantitative measurement of filament ruptures of a multi-filament AR-glass yarn embedded in concrete

    No full text
    This paper presents a new digital image analysis method for quantitative and online measurement of filament ruptures of a multi-filament AR-glass yarn embedded in concrete during pullout loading. The proposed method was developed based on an existing test method for determination of filament ruptures occurring during the loading called failure investigation using light transmitting (FILT) property test, which uses light transmitting property of AR-glass fibers. Artificial light is exposed on the glass filaments from one side of the specimen. On the opposite side, a charge-coupled device (CCD) camera with an optical microscope records the lighted filament cross-sections in the yarn. To detect filament ruptures during pullout loading, the light intensity time history of every individual filament of the yarn was investigated by a digital image analysis method. The number of broken filaments was also investigated by acoustic emission (AE) analysis simultaneously and the results were compared. Test results showed that the light transmitting property of AR-glass can be used to identify filament ruptures and it is possible to determine the failure of the filaments during pullout in the cross-section quantitatively by the improved FILT test. © RILEM 2011.Deutsche Forschungsgemeinschaft Deutsche Forschungsgemeinschaft RWTH Aachen UniversityAcknowledgments This research project is part of the Collaborative Research Centre 532 ‘‘Textile Reinforced Concrete—technical basis for the development of a new technology’’ (SFB 532) and is sponsored by the Deutsche Forschungsgemeinschaft (DFG). The support is gratefully acknowledged. The first author thanks to SFB 532 for the support during his stay as guest scientist in RWTH Aachen University

    Leaching behaviour of renderings and mortars

    No full text
    In this paper the results of two research projects concerning the leaching behaviour of renderings and mortars are presented. At the Institute of Building Materials Research of the RWTH Aachen University two renderings and a masonry mortar were leached in irrigation tests and long term tank tests. The results are compared to the results of outdoor experiments, which have been carried out by the Fraunhofer Institute for Building Physics of Holzkirchen. The results show that one type of experiment does not generally show the highest release rates. For some elements wet and dry cycles seem to have influence on the leaching behaviour. The comparison of the concentrations and the limit values for groundwater showed that most trace elements are not critical. But chromium and vanadium shall be further investigated
    corecore