5 research outputs found

    The involvement of dityrosine crosslinking in α-synuclein assembly and deposition in Lewy Bodies in Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is characterized by intracellular, insoluble Lewy bodies composed of highly stable α-synuclein (α-syn) amyloid fibrils. α-synuclein is an intrinsically disordered protein that has the capacity to assemble to form β-sheet rich fibrils. Oxidiative stress and metal rich environments have been implicated in triggering assembly. Here, we have explored the composition of Lewy bodies in post-mortem tissue using electron microscopy and immunogold labeling and revealed dityrosine crosslinks in Lewy bodies in brain tissue from PD patients. In vitro, we show that dityrosine cross-links in α-syn are formed by covalent ortho-ortho coupling of two tyrosine residues under conditions of oxidative stress by fluorescence and confirmed using mass-spectrometry. A covalently cross-linked dimer isolated by SDS-PAGE and mass analysis showed that dityrosine dimer was formed via the coupling of Y39-Y39 to give a homo dimer peptide that may play a key role in formation of oligomeric and seeds for fibril formation. Atomic force microscopy analysis reveals that the covalent dityrosine contributes to the stabilization of α-syn assemblies. Thus, the presence of oxidative stress induced dityrosine could play an important role in assembly and toxicity of α-syn in PD

    Increased Neural Activity of a Mushroom Body Neuron Subtype in the Brains of Forager Honeybees

    Get PDF
    Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as ‘dance communication’. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication

    Metabotropic glutamate receptor 5 within nucleus accumbens shell modulates environment-elicited cocaine conditioning expression

    No full text
    The metabotropic glutamate receptors 5 (mGluRs5) within the Nucleus Accumbens (NAc) have been implicated in the modulation of psychostimulant reward. We hypothesized that blockade of mGluR5 within the NAc shell would impair cocaine conditioning in rats. For this study, animals were implanted with cannulae within the NAc shell, and separate groups were exposed to a multimodal environment within activity chambers that signaled cocaine (cocaine-paired) or saline (controls, cocaine-unpaired) injections. Prior to placing the animals in the chambers, rats received systemic intraperitoneal injections of saline or cocaine for 10 consecutive sessions. In the test session (D12), animals were exposed to the multimodal environment without any cocaine or saline pre-treatment. Before placing the rats in the chambers, separate groups of animals were infused within the NAc shell with 2.5, 12 or 25nmol/0.5μl/side of 2-methyl-6- (phenylethynyl) pyridine (MPEP), an antagonist of mGluR5 or with vehicle. Blockade of the mGluR5 subtype at a 2.5nmol dose showed no significant difference in either the ambulatory distance (AD) or the vertical plane move time (VPT). In contrast, mGluR5 blockade at 12nmol and 25nmol decreased conditioned locomotion in the cocaine-paired groups. An association of the environmental cues with the effects of cocaine implies the involvement of memory process during the conditioning response. Our results suggest that mGluR5 within the NAc shell could be modulating the expression of memory related to the association of environmental cues with the effects of cocaine. We suggest that mGluR5 could be taking into account to further studies related with cocaine exposure and cocaine addiction treatments

    Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms

    No full text
    corecore